Design of a sector bowtie nano-rectenna for optical power and infrared detection

Kai Wang, Haifeng Hu, Shan Lu, Lingju Guo, Tao He

PDF(640 KB)
PDF(640 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 104101. DOI: 10.1007/s11467-015-0508-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Design of a sector bowtie nano-rectenna for optical power and infrared detection

Author information +
History +

Abstract

We designed a sector bowtie nanoantenna integrated with a rectifier (Au−TiOx−Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5−30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.

Keywords

nano-rectenna / MIM diode / surface plasmon resonance / local field enhancement / photoelectric conversion efficiency

Cite this article

Download citation ▾
Kai Wang, Haifeng Hu, Shan Lu, Lingju Guo, Tao He. Design of a sector bowtie nano-rectenna for optical power and infrared detection. Front. Phys., 2015, 10(5): 104101 https://doi.org/10.1007/s11467-015-0508-7

References

[1]
K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat, and C. A. Grimes, Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye, Nano Lett. 8(6), 1654 (2008)
CrossRef ADS Google scholar
[2]
G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, , Picosecond superconducting single-photon optical detector, Appl. Phys. Lett. 91, 012002 (2003)
[3]
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, A new generation of sensors based on extraordinary optical transmission, Acc. Chem. Res. 41(8), 1049 (2008)
CrossRef ADS Google scholar
[4]
I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, Solid-state single photon sources: the nanowire antenna, Opt. Express 17(4), 2095 (2009)
CrossRef ADS Google scholar
[5]
A. Langari and H. Hashemi, A cooling solution for power amplifier modules in cellular phone applications, Electronic Components and Technology Conference 49th. 316−320 (1999)
[6]
C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces, Nat. Photonics 2(3), 175 (2008)
CrossRef ADS Google scholar
[7]
P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides, Nano Lett. 10(4), 1429 (2010)
CrossRef ADS Google scholar
[8]
K. A. Willets, Plasmon point spread functions: How do we model plasmon-mediated emission processes? Front. Phys. 9(1), 3 (2014)
CrossRef ADS Google scholar
[9]
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
CrossRef ADS Google scholar
[10]
A. Ono, M. Kikawada, W. Inami, and Y. Kawata, Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration, Front. Phys. 9(1), 60 (2014)
CrossRef ADS Google scholar
[11]
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
CrossRef ADS Google scholar
[12]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)
CrossRef ADS Google scholar
[13]
C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, Nanometer thin-film Ni−NiO−Ni diodes for detection and mixing of 30 THz radiation, Infrared Phys. Technol. 39(3), 123 (1998)
CrossRef ADS Google scholar
[14]
J. A. Bean, A. Weeks, and G. D. Boreman, Performance optimization of antenna-coupled tunnel diode infrared detectors, Quantum Electron. 47(1), 126 (2011)
CrossRef ADS Google scholar
[15]
Z. Zhu, S. Joshi, and G. Moddel, High performance room temperature rectenna IR detectors using graphene geometric diodes, Selected Topics in Quantum Electronics 20, (2014)
[16]
L. Son, T. Tachiki, and T. Uchida, Fabrication of Vox microbolometer detector coupled with thin-film spiral antenna by metal-organic decomposition, 37th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz)1−2 (2012)
[17]
S. Krishnan, H. La Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, Design and development of batch fabricatable metal−insulator−metal diode and microstrip slot antenna as rectenna elements, Sens. Actuators A Phys. 142(1), 40 (2008)
CrossRef ADS Google scholar
[18]
K. Choi, F. Yesilkoy, G. Ryu, S. H. Cho, N. Goldsman, M. Dagenais, and M. Peckerar, A focused asymmetric metal−insulator−metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis, IEEE Trans. Electron. Dev. 58(10), 3519 (2011)
CrossRef ADS Google scholar
[19]
S. Zhang, L. Wang, C. Xu, D. Li, L. Chen, and D. Yang, Fabrication of Ni-NiO-Cu metal-insulator-metal tunnel diodes via anodic aluminum oxide templates, ECS Solid State Letters 2(1), Q1 (2012)
CrossRef ADS Google scholar
[20]
M. Gadalla, M. Abdel-Rahman, and A. Shamim, Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification, Scientific reports 4, (2014)
CrossRef ADS Google scholar
[21]
P. Mühlschlegel, H. J. Eisler, O. Martin, B. Hecht, and D. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)
CrossRef ADS Google scholar
[22]
D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, Gap-dependent optical coupling of single “bowtie”nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)
CrossRef ADS Google scholar
[23]
A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, Field enhancement and gapdependent resonance in a system of two opposing tip-to-tip Au nanotriangles, Phys. Rev. B 72(16), 165409 (2005)
CrossRef ADS Google scholar
[24]
F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, The effect of metal dispersion on the resonance of antennas at infrared frequencies, Infrared Phys. Technol. 52(1), 48 (2009)
CrossRef ADS Google scholar
[25]
A. Alù and N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101(4), 043901 (2008)
CrossRef ADS Google scholar
[26]
T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, Coating effect on optical resonance of plasmonic nanobowtie antenna, Appl. Phys. Lett. 97(6), 063106 (2010)
CrossRef ADS Google scholar
[27]
S. Choi, and K. Sarabandi, Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics, 2013 US National Committee of URSI National in Radio Science Meeting (USNC-URSI NRSM)1−1(2013)
[28]
J. W. Liaw, Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission, IEEE J. Sel. Top. Quantum Electron. 14(6), 1441 (2008)
CrossRef ADS Google scholar
[29]
X. Lei, and V. Van, FDTD modeling of traveling-wave MIM diode for ultrafast pulse detection, Opt. Commun. 294, 344 (2013)
CrossRef ADS Google scholar
[30]
A. Sabaawi, C. Tsimenidis, and B. Sharif, Bow-tie nanoarray rectenna: Design and optimization, 2012 6th Euro-pean Conference in Antennas and Propagation (EUCAP)1975−1978 (2012)
[31]
L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metalinsulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 64 (2014)
CrossRef ADS Google scholar
[32]
A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, Analysis and modeling of infrared solar rectennas, IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013)
CrossRef ADS Google scholar
[33]
E. Briones, J. Alda, and F. J. González, Conversion efficiency of broad-band rectennas for solar energy harvesting applications, Opt. Express 21(S3), A412 (2013)
CrossRef ADS Google scholar
[34]
D. K. Kotter, S. D. Novack, W. Slafer, and P. Pinhero, Theory and manufacturing processes of solar nanoantenna electromagnetic collectors, J. Sol. Energy Eng. 132(1), 011014 (2010)
CrossRef ADS Google scholar
[35]
M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, Design of optical antenna for solar energy collection, Energy 39(1), 27 (2012)
CrossRef ADS Google scholar
[36]
Y. M. Wu, L. W. Li, and B. Liu, Gold bow-tie shaped aperture nanoantenna: Wide band near-field resonance and farfield radiation, IEEE Trans. Magn. 46(6), 1918 (2010)
CrossRef ADS Google scholar
[37]
M. A. Ordal, R. J. Bell, R. W. Jr Alexander, L. L. Long, and M. R. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt. 24(24), 4493 (1985)
CrossRef ADS Google scholar
[38]
T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle, Nat. Commun. 2, 333 (2011)
CrossRef ADS Google scholar
[39]
M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas, Phys. Rev. Lett. 109(23), 233902 (2012)
CrossRef ADS Google scholar
[40]
I. Wilke, Y. Oppliger, W. Herrmann, and F. Kneubühl, Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation, Appl. Phys. A 58(4), 329 (1994)
CrossRef ADS Google scholar
[41]
C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. Kneubühl, Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bowtie antennas, Appl. Phys. B 63(2), 135 (1996)
CrossRef ADS Google scholar
[42]
C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, Spatial impulse response of lithographic infrared antennas, Appl. Opt. 38(1), 37 (1999)
CrossRef ADS Google scholar
[43]
J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)
CrossRef ADS Google scholar
[44]
W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles, J. Appl. Phys. 108(12), 124314 (2010)
CrossRef ADS Google scholar
[45]
L. Novotny, Effective wavelength scaling for optical antennas, Phys. Rev. Lett. 98(26), 266802 (2007)
CrossRef ADS Google scholar
[46]
W. Ding, S. Andrews, and S. Maier, Internal excitation and superfocusing of surface plasmon polaritons on a silvercoated optical fiber tip, Phys. Rev. A 75(6), 063822 (2007)
CrossRef ADS Google scholar
[47]
Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, Probing and controlling photothermal heat generation in plasmonic nanostructures, Nano Lett. 13(3), 1023 (2013)
CrossRef ADS Google scholar
[48]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
CrossRef ADS Google scholar
[49]
A. Novitsky, A. Uskov, C. Gritti, and I. Protsenko, Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas, Prog. Photovolt. Res. Appl. (2012)
[50]
S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells, Plasmonics 9(2), 283 (2014)
CrossRef ADS Google scholar
[51]
P. C. Chang, C. J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, Finite size effect in ZnO nanowires, Appl. Phys. Lett. 90(11), 113101 (2007)
CrossRef ADS Google scholar
[52]
J. Li, C. Wang, H. Peng, M. Wang, R. Zhang, H. Wang, J. Liu, M. L. Zhao, and L. M. Mei, Vibrational and thermal properties of small diameter silicon nanowires, J. Appl. Phys. 108(6), 063702 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(640 KB)

Accesses

Citations

Detail

Sections
Recommended

/