Design of a sector bowtie nano-rectenna for optical power and infrared detection

Kai Wang , Haifeng Hu , Shan Lu , Lingju Guo , Tao He

Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 104101

PDF (640KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 104101 DOI: 10.1007/s11467-015-0508-7
RESEARCH ARTICLE

Design of a sector bowtie nano-rectenna for optical power and infrared detection

Author information +
History +
PDF (640KB)

Abstract

We designed a sector bowtie nanoantenna integrated with a rectifier (Au−TiOx−Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5−30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.

Keywords

nano-rectenna / MIM diode / surface plasmon resonance / local field enhancement / photoelectric conversion efficiency

Cite this article

Download citation ▾
Kai Wang, Haifeng Hu, Shan Lu, Lingju Guo, Tao He. Design of a sector bowtie nano-rectenna for optical power and infrared detection. Front. Phys., 2015, 10(5): 104101 DOI:10.1007/s11467-015-0508-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat, and C. A. Grimes, Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye, Nano Lett. 8(6), 1654 (2008)

[2]

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, , Picosecond superconducting single-photon optical detector, Appl. Phys. Lett. 91, 012002 (2003)

[3]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, A new generation of sensors based on extraordinary optical transmission, Acc. Chem. Res. 41(8), 1049 (2008)

[4]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, Solid-state single photon sources: the nanowire antenna, Opt. Express 17(4), 2095 (2009)

[5]

A. Langari and H. Hashemi, A cooling solution for power amplifier modules in cellular phone applications, Electronic Components and Technology Conference 49th. 316−320 (1999)

[6]

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces, Nat. Photonics 2(3), 175 (2008)

[7]

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides, Nano Lett. 10(4), 1429 (2010)

[8]

K. A. Willets, Plasmon point spread functions: How do we model plasmon-mediated emission processes? Front. Phys. 9(1), 3 (2014)

[9]

Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)

[10]

A. Ono, M. Kikawada, W. Inami, and Y. Kawata, Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration, Front. Phys. 9(1), 60 (2014)

[11]

D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)

[12]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)

[13]

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, Nanometer thin-film Ni−NiO−Ni diodes for detection and mixing of 30 THz radiation, Infrared Phys. Technol. 39(3), 123 (1998)

[14]

J. A. Bean, A. Weeks, and G. D. Boreman, Performance optimization of antenna-coupled tunnel diode infrared detectors, Quantum Electron. 47(1), 126 (2011)

[15]

Z. Zhu, S. Joshi, and G. Moddel, High performance room temperature rectenna IR detectors using graphene geometric diodes, Selected Topics in Quantum Electronics 20, (2014)

[16]

L. Son, T. Tachiki, and T. Uchida, Fabrication of Vox microbolometer detector coupled with thin-film spiral antenna by metal-organic decomposition, 37th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz)1−2 (2012)

[17]

S. Krishnan, H. La Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, Design and development of batch fabricatable metal−insulator−metal diode and microstrip slot antenna as rectenna elements, Sens. Actuators A Phys. 142(1), 40 (2008)

[18]

K. Choi, F. Yesilkoy, G. Ryu, S. H. Cho, N. Goldsman, M. Dagenais, and M. Peckerar, A focused asymmetric metal−insulator−metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis, IEEE Trans. Electron. Dev. 58(10), 3519 (2011)

[19]

S. Zhang, L. Wang, C. Xu, D. Li, L. Chen, and D. Yang, Fabrication of Ni-NiO-Cu metal-insulator-metal tunnel diodes via anodic aluminum oxide templates, ECS Solid State Letters 2(1), Q1 (2012)

[20]

M. Gadalla, M. Abdel-Rahman, and A. Shamim, Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification, Scientific reports 4, (2014)

[21]

P. Mühlschlegel, H. J. Eisler, O. Martin, B. Hecht, and D. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)

[22]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, Gap-dependent optical coupling of single “bowtie”nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)

[23]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, Field enhancement and gapdependent resonance in a system of two opposing tip-to-tip Au nanotriangles, Phys. Rev. B 72(16), 165409 (2005)

[24]

F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, The effect of metal dispersion on the resonance of antennas at infrared frequencies, Infrared Phys. Technol. 52(1), 48 (2009)

[25]

A. Alù and N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101(4), 043901 (2008)

[26]

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, Coating effect on optical resonance of plasmonic nanobowtie antenna, Appl. Phys. Lett. 97(6), 063106 (2010)

[27]

S. Choi, and K. Sarabandi, Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics, 2013 US National Committee of URSI National in Radio Science Meeting (USNC-URSI NRSM)1−1(2013)

[28]

J. W. Liaw, Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission, IEEE J. Sel. Top. Quantum Electron. 14(6), 1441 (2008)

[29]

X. Lei, and V. Van, FDTD modeling of traveling-wave MIM diode for ultrafast pulse detection, Opt. Commun. 294, 344 (2013)

[30]

A. Sabaawi, C. Tsimenidis, and B. Sharif, Bow-tie nanoarray rectenna: Design and optimization, 2012 6th Euro-pean Conference in Antennas and Propagation (EUCAP)1975−1978 (2012)

[31]

L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metalinsulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 64 (2014)

[32]

A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, Analysis and modeling of infrared solar rectennas, IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013)

[33]

E. Briones, J. Alda, and F. J. González, Conversion efficiency of broad-band rectennas for solar energy harvesting applications, Opt. Express 21(S3), A412 (2013)

[34]

D. K. Kotter, S. D. Novack, W. Slafer, and P. Pinhero, Theory and manufacturing processes of solar nanoantenna electromagnetic collectors, J. Sol. Energy Eng. 132(1), 011014 (2010)

[35]

M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, Design of optical antenna for solar energy collection, Energy 39(1), 27 (2012)

[36]

Y. M. Wu, L. W. Li, and B. Liu, Gold bow-tie shaped aperture nanoantenna: Wide band near-field resonance and farfield radiation, IEEE Trans. Magn. 46(6), 1918 (2010)

[37]

M. A. Ordal, R. J. Bell, R. W. Jr Alexander, L. L. Long, and M. R. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt. 24(24), 4493 (1985)

[38]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle, Nat. Commun. 2, 333 (2011)

[39]

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas, Phys. Rev. Lett. 109(23), 233902 (2012)

[40]

I. Wilke, Y. Oppliger, W. Herrmann, and F. Kneubühl, Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation, Appl. Phys. A 58(4), 329 (1994)

[41]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. Kneubühl, Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bowtie antennas, Appl. Phys. B 63(2), 135 (1996)

[42]

C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, Spatial impulse response of lithographic infrared antennas, Appl. Opt. 38(1), 37 (1999)

[43]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)

[44]

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles, J. Appl. Phys. 108(12), 124314 (2010)

[45]

L. Novotny, Effective wavelength scaling for optical antennas, Phys. Rev. Lett. 98(26), 266802 (2007)

[46]

W. Ding, S. Andrews, and S. Maier, Internal excitation and superfocusing of surface plasmon polaritons on a silvercoated optical fiber tip, Phys. Rev. A 75(6), 063822 (2007)

[47]

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, Probing and controlling photothermal heat generation in plasmonic nanostructures, Nano Lett. 13(3), 1023 (2013)

[48]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)

[49]

A. Novitsky, A. Uskov, C. Gritti, and I. Protsenko, Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas, Prog. Photovolt. Res. Appl. (2012)

[50]

S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells, Plasmonics 9(2), 283 (2014)

[51]

P. C. Chang, C. J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, Finite size effect in ZnO nanowires, Appl. Phys. Lett. 90(11), 113101 (2007)

[52]

J. Li, C. Wang, H. Peng, M. Wang, R. Zhang, H. Wang, J. Liu, M. L. Zhao, and L. M. Mei, Vibrational and thermal properties of small diameter silicon nanowires, J. Appl. Phys. 108(6), 063702 (2010)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (640KB)

1025

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/