Design of a sector bowtie nano-rectenna for optical power and infrared detection
Kai Wang, Haifeng Hu, Shan Lu, Lingju Guo, Tao He
Design of a sector bowtie nano-rectenna for optical power and infrared detection
We designed a sector bowtie nanoantenna integrated with a rectifier (Au−TiOx−Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5−30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.
nano-rectenna / MIM diode / surface plasmon resonance / local field enhancement / photoelectric conversion efficiency
[1] |
K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat, and C. A. Grimes, Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye, Nano Lett. 8(6), 1654 (2008)
CrossRef
ADS
Google scholar
|
[2] |
G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov,
|
[3] |
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, A new generation of sensors based on extraordinary optical transmission, Acc. Chem. Res. 41(8), 1049 (2008)
CrossRef
ADS
Google scholar
|
[4] |
I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, Solid-state single photon sources: the nanowire antenna, Opt. Express 17(4), 2095 (2009)
CrossRef
ADS
Google scholar
|
[5] |
A. Langari and H. Hashemi, A cooling solution for power amplifier modules in cellular phone applications, Electronic Components and Technology Conference 49th. 316−320 (1999)
|
[6] |
C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces, Nat. Photonics 2(3), 175 (2008)
CrossRef
ADS
Google scholar
|
[7] |
P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides, Nano Lett. 10(4), 1429 (2010)
CrossRef
ADS
Google scholar
|
[8] |
K. A. Willets, Plasmon point spread functions: How do we model plasmon-mediated emission processes? Front. Phys. 9(1), 3 (2014)
CrossRef
ADS
Google scholar
|
[9] |
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
CrossRef
ADS
Google scholar
|
[10] |
A. Ono, M. Kikawada, W. Inami, and Y. Kawata, Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration, Front. Phys. 9(1), 60 (2014)
CrossRef
ADS
Google scholar
|
[11] |
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
CrossRef
ADS
Google scholar
|
[12] |
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)
CrossRef
ADS
Google scholar
|
[13] |
C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, Nanometer thin-film Ni−NiO−Ni diodes for detection and mixing of 30 THz radiation, Infrared Phys. Technol. 39(3), 123 (1998)
CrossRef
ADS
Google scholar
|
[14] |
J. A. Bean, A. Weeks, and G. D. Boreman, Performance optimization of antenna-coupled tunnel diode infrared detectors, Quantum Electron. 47(1), 126 (2011)
CrossRef
ADS
Google scholar
|
[15] |
Z. Zhu, S. Joshi, and G. Moddel, High performance room temperature rectenna IR detectors using graphene geometric diodes, Selected Topics in Quantum Electronics 20, (2014)
|
[16] |
L. Son, T. Tachiki, and T. Uchida, Fabrication of Vox microbolometer detector coupled with thin-film spiral antenna by metal-organic decomposition, 37th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz)1−2 (2012)
|
[17] |
S. Krishnan, H. La Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, Design and development of batch fabricatable metal−insulator−metal diode and microstrip slot antenna as rectenna elements, Sens. Actuators A Phys. 142(1), 40 (2008)
CrossRef
ADS
Google scholar
|
[18] |
K. Choi, F. Yesilkoy, G. Ryu, S. H. Cho, N. Goldsman, M. Dagenais, and M. Peckerar, A focused asymmetric metal−insulator−metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis, IEEE Trans. Electron. Dev. 58(10), 3519 (2011)
CrossRef
ADS
Google scholar
|
[19] |
S. Zhang, L. Wang, C. Xu, D. Li, L. Chen, and D. Yang, Fabrication of Ni-NiO-Cu metal-insulator-metal tunnel diodes via anodic aluminum oxide templates, ECS Solid State Letters 2(1), Q1 (2012)
CrossRef
ADS
Google scholar
|
[20] |
M. Gadalla, M. Abdel-Rahman, and A. Shamim, Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification, Scientific reports 4, (2014)
CrossRef
ADS
Google scholar
|
[21] |
P. Mühlschlegel, H. J. Eisler, O. Martin, B. Hecht, and D. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)
CrossRef
ADS
Google scholar
|
[22] |
D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, Gap-dependent optical coupling of single “bowtie”nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)
CrossRef
ADS
Google scholar
|
[23] |
A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, Field enhancement and gapdependent resonance in a system of two opposing tip-to-tip Au nanotriangles, Phys. Rev. B 72(16), 165409 (2005)
CrossRef
ADS
Google scholar
|
[24] |
F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, The effect of metal dispersion on the resonance of antennas at infrared frequencies, Infrared Phys. Technol. 52(1), 48 (2009)
CrossRef
ADS
Google scholar
|
[25] |
A. Alù and N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101(4), 043901 (2008)
CrossRef
ADS
Google scholar
|
[26] |
T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, Coating effect on optical resonance of plasmonic nanobowtie antenna, Appl. Phys. Lett. 97(6), 063106 (2010)
CrossRef
ADS
Google scholar
|
[27] |
S. Choi, and K. Sarabandi, Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics, 2013 US National Committee of URSI National in Radio Science Meeting (USNC-URSI NRSM)1−1(2013)
|
[28] |
J. W. Liaw, Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission, IEEE J. Sel. Top. Quantum Electron. 14(6), 1441 (2008)
CrossRef
ADS
Google scholar
|
[29] |
X. Lei, and V. Van, FDTD modeling of traveling-wave MIM diode for ultrafast pulse detection, Opt. Commun. 294, 344 (2013)
CrossRef
ADS
Google scholar
|
[30] |
A. Sabaawi, C. Tsimenidis, and B. Sharif, Bow-tie nanoarray rectenna: Design and optimization, 2012 6th Euro-pean Conference in Antennas and Propagation (EUCAP)1975−1978 (2012)
|
[31] |
L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metalinsulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 64 (2014)
CrossRef
ADS
Google scholar
|
[32] |
A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, Analysis and modeling of infrared solar rectennas, IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013)
CrossRef
ADS
Google scholar
|
[33] |
E. Briones, J. Alda, and F. J. González, Conversion efficiency of broad-band rectennas for solar energy harvesting applications, Opt. Express 21(S3), A412 (2013)
CrossRef
ADS
Google scholar
|
[34] |
D. K. Kotter, S. D. Novack, W. Slafer, and P. Pinhero, Theory and manufacturing processes of solar nanoantenna electromagnetic collectors, J. Sol. Energy Eng. 132(1), 011014 (2010)
CrossRef
ADS
Google scholar
|
[35] |
M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, Design of optical antenna for solar energy collection, Energy 39(1), 27 (2012)
CrossRef
ADS
Google scholar
|
[36] |
Y. M. Wu, L. W. Li, and B. Liu, Gold bow-tie shaped aperture nanoantenna: Wide band near-field resonance and farfield radiation, IEEE Trans. Magn. 46(6), 1918 (2010)
CrossRef
ADS
Google scholar
|
[37] |
M. A. Ordal, R. J. Bell, R. W. Jr Alexander, L. L. Long, and M. R. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt. 24(24), 4493 (1985)
CrossRef
ADS
Google scholar
|
[38] |
T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle, Nat. Commun. 2, 333 (2011)
CrossRef
ADS
Google scholar
|
[39] |
M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas, Phys. Rev. Lett. 109(23), 233902 (2012)
CrossRef
ADS
Google scholar
|
[40] |
I. Wilke, Y. Oppliger, W. Herrmann, and F. Kneubühl, Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation, Appl. Phys. A 58(4), 329 (1994)
CrossRef
ADS
Google scholar
|
[41] |
C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. Kneubühl, Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bowtie antennas, Appl. Phys. B 63(2), 135 (1996)
CrossRef
ADS
Google scholar
|
[42] |
C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, Spatial impulse response of lithographic infrared antennas, Appl. Opt. 38(1), 37 (1999)
CrossRef
ADS
Google scholar
|
[43] |
J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)
CrossRef
ADS
Google scholar
|
[44] |
W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles, J. Appl. Phys. 108(12), 124314 (2010)
CrossRef
ADS
Google scholar
|
[45] |
L. Novotny, Effective wavelength scaling for optical antennas, Phys. Rev. Lett. 98(26), 266802 (2007)
CrossRef
ADS
Google scholar
|
[46] |
W. Ding, S. Andrews, and S. Maier, Internal excitation and superfocusing of surface plasmon polaritons on a silvercoated optical fiber tip, Phys. Rev. A 75(6), 063822 (2007)
CrossRef
ADS
Google scholar
|
[47] |
Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, Probing and controlling photothermal heat generation in plasmonic nanostructures, Nano Lett. 13(3), 1023 (2013)
CrossRef
ADS
Google scholar
|
[48] |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
CrossRef
ADS
Google scholar
|
[49] |
A. Novitsky, A. Uskov, C. Gritti, and I. Protsenko, Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas, Prog. Photovolt. Res. Appl. (2012)
|
[50] |
S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells, Plasmonics 9(2), 283 (2014)
CrossRef
ADS
Google scholar
|
[51] |
P. C. Chang, C. J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, Finite size effect in ZnO nanowires, Appl. Phys. Lett. 90(11), 113101 (2007)
CrossRef
ADS
Google scholar
|
[52] |
J. Li, C. Wang, H. Peng, M. Wang, R. Zhang, H. Wang, J. Liu, M. L. Zhao, and L. M. Mei, Vibrational and thermal properties of small diameter silicon nanowires, J. Appl. Phys. 108(6), 063702 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |