Redshift drift constraints on f(T) gravity
Jia-Jia Geng, Rui-Yun Guo, Dong-Ze He, Jing-Fei Zhang, Xin Zhang
Redshift drift constraints on f(T) gravity
We explore the impact of the Sandage−Loeb (SL) test on the precision of cosmological constraints for f(T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the “redshift desert” of . To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f(T) gravity theories. Two typical f(T) models are considered, the power-law model f(T)PL and the exponential-form model f(T)EXP. The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm and the Hubble constant H0 in other cosmological observations. For the considered f(T) models, a 30-year observation of the SL test can improve the constraint precision of Ωm and H0 enormously but cannot effectively improve the constraint precision of the model parameters.
redshift drift / cosmological constraints / dark energy / modified gravity / f(T) gravity
[1] |
A. Sandage, The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes, Astrophys. J. 136, 319 (1962)
CrossRef
ADS
Google scholar
|
[2] |
A. Loeb, Direct measurement of cosmological parameters from the cosmic deceleration of extragalactic objects, Astrophys. J. 499, L111 (1998)
CrossRef
ADS
Google scholar
|
[3] |
P. S. Corasaniti, D. Huterer, and A. Melchiorri, Exploring the dark energy redshift desert with the Sandage−Loeb test, Phys. Rev. D 75, 062001 (2007)
CrossRef
ADS
Google scholar
|
[4] |
A. Balbi and C. Quercellini, The time evolution of cosmological redshift as a test of dark energy, Mon. Not. Roy. Astron. Soc 382, 1623 (2007)
CrossRef
ADS
Google scholar
|
[5] |
H. B. Zhang, W. Zhong, Z. H. Zhu, and S. He, Exploring holographic dark energy model with Sandage−Leob test, Phys. Rev. D 76, 123508 (2007)
CrossRef
ADS
Google scholar
|
[6] |
J. Zhang, L. Zhang, and X. Zhang, Sandage−Loeb test for the new agegraphic and Ricci dark energy models, Phys. Lett. B 691, 11 (2010)
CrossRef
ADS
Google scholar
|
[7] |
Z. Li, K. Liao, P. Wu, H. Yu, and Z. H. Zhu, Probing modified gravity theories with the Sandage−Loeb test, Phys. Rev. D 88, 2, 023003 (2013)
|
[8] |
S. Yuan, S. Liu, and T. J. Zhang, Breaking through the high redshift bottleneck of observational Hubble parameter Data: The Sandage−Loeb signal Scheme, J. Cosmol. Astropart. Phys. 02, 025 (2015)
|
[9] |
M. Martinelli, S. Pandolfi, C. J. A. P. Martins, and P. E. Vielzeuf, Probing dark energy with redshift-drift, Phys. Rev. D 86, 123001 (2012)
CrossRef
ADS
Google scholar
|
[10] |
J. J. Geng, J. F. Zhang, and X. Zhang, Quantifying the impact of future Sandage−Loeb test data on dark energy constraints, J. Cosmol. Astropart. Phys. 07, 006 (2014)
|
[11] |
J. J. Geng, J. F. Zhang, and X. Zhang, Parameter estimation with Sandage−Loeb test, J. Cosmol. Astropart. Phys. 12, 018 (2014)
|
[12] |
J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Redshift drift exploration for interacting dark energy, Eur. Phys. J. C 75(8), 356 (2015)
CrossRef
ADS
Google scholar
|
[13] |
J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani,
CrossRef
ADS
Google scholar
|
[14] |
P. J. E. Peebles and B. Ratra, Cosmology with a time variable cosmological constant, Astrophys. J. 325, L17 (1988)
CrossRef
ADS
Google scholar
|
[15] |
R. R. Caldwell, Spintessence! New models for dark matter and dark energy, Phys. Lett. B 545, 23 (2002)
CrossRef
ADS
Google scholar
|
[16] |
C. Armendariz-Picon, T. Damour, and V. Mukhanov, k-inflation, Phys. Lett. B 458, 209 (1999)
|
[17] |
A. Y. Kamenshchik, U. Moschella, and V. Pasquier, An Alternative to quintessence, Phys. Lett. B 511, 265 (2001)
CrossRef
ADS
Google scholar
|
[18] |
X. Zhang, F. Q. Wu, and J. F. Zhang, New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter, J. Cosmol. Astropart. Phys. 01, 003 (2006)
|
[19] |
T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D 66, 021301 (2002)
CrossRef
ADS
Google scholar
|
[20] |
M. Li, A model of holographic dark energy, Phys. Lett. B 603, 1 (2004)
CrossRef
ADS
Google scholar
|
[21] |
X. Zhang and F. Q. Wu, Constraints on holographic dark energy from latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations, Phys. Rev. D 76, 023502 (2007)
CrossRef
ADS
Google scholar
|
[22] |
X. Zhang, Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model, Phys. Lett. B 683, 81 (2010)
CrossRef
ADS
Google scholar
|
[23] |
Y. H. Li, S. Wang, X. D. Li, and X. Zhang, Holographic dark energy in a Universe with spatial curvature and massive neutrinos: A fullMarkov chainMonte Carlo exploration, J. Cosmol. Astropart. Phys. 02, 033 (2013)
|
[24] |
H. Wei, R. G. Cai, and D. F. Zeng, Hessence: A new view of quintom dark energy, Class. Quant. Grav. 22, 3189 (2005)
CrossRef
ADS
Google scholar
|
[25] |
W. Zhao and Y. Zhang, The state equation of the Yang−Mills field dark energy models, Class. Quant. Grav. 23, 3405 (2006)
CrossRef
ADS
Google scholar
|
[26] |
X. Zhang, Reconstructing holographic quintessence, Phys. Lett. B 648, 1 (2007)
CrossRef
ADS
Google scholar
|
[27] |
Y. H. Li, J. F. Zhang, and X. Zhang, Parametrized post-Friedmann framework for interacting dark energy, Phys. Rev. D 90, 063005 (2014)
CrossRef
ADS
Google scholar
|
[28] |
Y. H. Li, J. F. Zhang, and X. Zhang, Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach, Phys. Rev. D 90, 123007 (2014)
CrossRef
ADS
Google scholar
|
[29] |
S. Wang, J. J. Geng, Y. L. Hu, and X. Zhang, Revisit of constraints on holographic dark energy: SNLS3 dataset with the effects of time-varying β and different light-curve fitters, Sci. China Phys. Mech. Astron. 58(1), 019801 (2015)
CrossRef
ADS
Google scholar
|
[30] |
M. Zhang, C. Y. Sun, Z. Y. Yang, and R. H. Yue, Cosmological evolution of quintessence with a sign-changing interaction in dark sector, Sci. China- Phys. Mech. Astron. 57(9), 1805 (2014)
CrossRef
ADS
Google scholar
|
[31] |
Y. Z. Hu, M. Li, X. D. Li, and Z. H. Zhang, Investigating the possibility of a turning point in the dark energy equation of state, Sci. China- Phys. Mech. Astron. 57(8), 1607 (2014)
CrossRef
ADS
Google scholar
|
[32] |
J. B. Lu, L. D. Chen, L. X. Xu, and T. Q. Li, Comparing the VGCG model as the unification of dark sectors with observations, Sci. China- Phys. Mech. Astron. 57(4), 796−800 (2014)
CrossRef
ADS
Google scholar
|
[33] |
J. F. Zhang, L. A. Zhao, and X. Zhang, Revisiting the interacting model of new agegraphic dark energy, Sci. China- Phys. Mech. Astron. 57(2), 387 (2014)
CrossRef
ADS
Google scholar
|
[34] |
X. X. Duan, Y. C. Li, and C. J. Gao, Constraining the lattice fluid dark energy from SNe Ia, BAO and OHD, Sci. China- Phys. Mech. Astron. 56(6), 1220 (2013)
CrossRef
ADS
Google scholar
|
[35] |
S. Wang, Y. Z. Wang, J. J. Geng, and X. Zhang, Effects of time-varying β in SNLS3 on constraining interacting dark energy models, Eur. Phys. J. C 74(11), 3148 (2014)
CrossRef
ADS
Google scholar
|
[36] |
J. F. Zhang, M. M. Zhao, Y. H. Li, and X. Zhang, Neutrinos in the holographic dark energy model: Constraints from latest measurements of expansion history and growth of structure, J. Cosmol. Astropart. Phys. 04, 038 (2015)
|
[37] |
J. F. Zhang, M. M. Zhao, J. L. Cui, and X. Zhang, Revisiting the holographic dark energy in a non-flat universe: Alternative model and cosmological parameter constraints, Eur. Phys. J. C 74(11), 3178 (2014)
CrossRef
ADS
Google scholar
|
[38] |
M. Li, X. D. Li, S. Wang, and Y. Wang, Dark energy: A brief review, Front. Phys. 8(6), 828 (2013)
CrossRef
ADS
Google scholar
|
[39] |
V. Sahni and S. Habib, Does inflationary particle production suggest Omega(m) less than 1? Phys. Rev. Lett. 81, 1766 (1998)
CrossRef
ADS
Google scholar
|
[40] |
L. Parker and A. Raval, Nonperturbative effects of vacuum energy on the recent expansion of the universe, Phys. Rev. D 60, 063512 (1999)
CrossRef
ADS
Google scholar
|
[41] |
G. Dvali, G. Gabadadze, and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485, 208 (2000)
CrossRef
ADS
Google scholar
|
[42] |
S. Nojiri, S. D. Odintsov, and M. Sasaki, Gauss−Bonnet dark energy, Phys. Rev. D 71, 123509 (2005)
CrossRef
ADS
Google scholar
|
[43] |
A. Nicolis, R. Rattazzi, and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79, 064036 (2009)
CrossRef
ADS
Google scholar
|
[44] |
W. Hu and I. Sawicki, Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D 76, 064004 (2007)
CrossRef
ADS
Google scholar
|
[45] |
A. A. Starobinsky, Disappearing cosmological constant in f(R) gravity, J. Exp. Theor. Phys. Lett. 86, 157 (2007)
CrossRef
ADS
Google scholar
|
[46] |
G. R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys. Rev. D 79, 124019 (2009)
CrossRef
ADS
Google scholar
|
[47] |
E. V. Linder, Einstein’s other gravity and the acceleration of the universe, Phys. Rev. D 81, 127301 (2010)
CrossRef
ADS
Google scholar
|
[48] |
T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, f(R, T) gravity, Phys. Rev. D 84, 024020 (2011)
CrossRef
ADS
Google scholar
|
[49] |
P. Wu and H. W. Yu, The dynamical behavior of f(T) theory, Phys. Lett. B 692, 176 (2010)
CrossRef
ADS
Google scholar
|
[50] |
R. Zheng and Q. G. Huang, Growth factor in f(T) gravity, J. Cosmol. Astropart. Phys. 03, 002 (2011)
|
[51] |
W. Tower, Modified entropic gravity revisited, Sci. China-Phys. Mech. Astron. 57(9), 1623 (2014)
CrossRef
ADS
Google scholar
|
[52] |
J. Wu, Z. X. Li, P. X. Wu, and H. W. Yu, Constrains on f(T) gravity with the strong gravitational lensing data, Sci. China- Phys. Mech. Astron. 57(5), 988−993 (2014)
CrossRef
ADS
Google scholar
|
[53] |
Y. K. Tang, H. S. Zhang, C. Y. Chen, and X. Z. Li, Fluctuation with dust of de Sitter ground state of scalar-tensor gravity, Sci. China- Phys. Mech. Astron. 57(3), 411−417(2014)
CrossRef
ADS
Google scholar
|
[54] |
S. Wang, Y. Z. Wang, and X. Zhang, Effects of a timevarying color-luminosity parameter β on the cosmological constraints of modified gravity models, Commun. Theor. Phys. 62(6), 927 (2014)
CrossRef
ADS
Google scholar
|
[55] |
J. F. Zhang, Y. H. Li, and X. Zhang, Measuring growth index in a universe with sterile neutrinos, Phys. Lett. B 739, 102 (2014)
CrossRef
ADS
Google scholar
|
[56] |
Y. H. Li, J. F. Zhang, and X. Zhang, Probing f(R) cosmology with sterile neutrinos via measurements of scaledependent growth rate of structure, Phys. Lett. B 744, 213 (2015)
CrossRef
ADS
Google scholar
|
[57] |
A. Conley,
CrossRef
ADS
Google scholar
|
[58] |
G. Hinshaw,
CrossRef
ADS
Google scholar
|
[59] |
F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders,
CrossRef
ADS
Google scholar
|
[60] |
N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta, and E. Kazin, A 2 percent distance to z=0.35 by reconstructing baryon acoustic oscillations- I. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427(3), 2132 (2012)
CrossRef
ADS
Google scholar
|
[61] |
L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, A. S. Bolton, J. Brinkmann, J. R. Brownstein,
CrossRef
ADS
Google scholar
|
[62] |
C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, T. Davis,
CrossRef
ADS
Google scholar
|
[63] |
Y. Wang and S. Wang, Distance priors from planck and dark energy constraints from current data, Phys. Rev. D 88, 043522 (2013)
CrossRef
ADS
Google scholar
|
[64] |
A. G. Riess,
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |