Redshift drift constraints on f(T) gravity

Jia-Jia Geng, Rui-Yun Guo, Dong-Ze He, Jing-Fei Zhang, Xin Zhang

PDF(377 KB)
PDF(377 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 109501. DOI: 10.1007/s11467-015-0507-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Redshift drift constraints on f(T) gravity

Author information +
History +

Abstract

We explore the impact of the Sandage−Loeb (SL) test on the precision of cosmological constraints for f(T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the “redshift desert” of 2z5. To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f(T) gravity theories. Two typical f(T) models are considered, the power-law model f(T)PL and the exponential-form model f(T)EXP. The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm and the Hubble constant H0 in other cosmological observations. For the considered f(T) models, a 30-year observation of the SL test can improve the constraint precision of Ωm and H0 enormously but cannot effectively improve the constraint precision of the model parameters.

Keywords

redshift drift / cosmological constraints / dark energy / modified gravity / f(T) gravity

Cite this article

Download citation ▾
Jia-Jia Geng, Rui-Yun Guo, Dong-Ze He, Jing-Fei Zhang, Xin Zhang. Redshift drift constraints on f(T) gravity. Front. Phys., 2015, 10(5): 109501 https://doi.org/10.1007/s11467-015-0507-8

References

[1]
A. Sandage, The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes, Astrophys. J. 136, 319 (1962)
CrossRef ADS Google scholar
[2]
A. Loeb, Direct measurement of cosmological parameters from the cosmic deceleration of extragalactic objects, Astrophys. J. 499, L111 (1998)
CrossRef ADS Google scholar
[3]
P. S. Corasaniti, D. Huterer, and A. Melchiorri, Exploring the dark energy redshift desert with the Sandage−Loeb test, Phys. Rev. D 75, 062001 (2007)
CrossRef ADS Google scholar
[4]
A. Balbi and C. Quercellini, The time evolution of cosmological redshift as a test of dark energy, Mon. Not. Roy. Astron. Soc 382, 1623 (2007)
CrossRef ADS Google scholar
[5]
H. B. Zhang, W. Zhong, Z. H. Zhu, and S. He, Exploring holographic dark energy model with Sandage−Leob test, Phys. Rev. D 76, 123508 (2007)
CrossRef ADS Google scholar
[6]
J. Zhang, L. Zhang, and X. Zhang, Sandage−Loeb test for the new agegraphic and Ricci dark energy models, Phys. Lett. B 691, 11 (2010)
CrossRef ADS Google scholar
[7]
Z. Li, K. Liao, P. Wu, H. Yu, and Z. H. Zhu, Probing modified gravity theories with the Sandage−Loeb test, Phys. Rev. D 88, 2, 023003 (2013)
[8]
S. Yuan, S. Liu, and T. J. Zhang, Breaking through the high redshift bottleneck of observational Hubble parameter Data: The Sandage−Loeb signal Scheme, J. Cosmol. Astropart. Phys. 02, 025 (2015)
[9]
M. Martinelli, S. Pandolfi, C. J. A. P. Martins, and P. E. Vielzeuf, Probing dark energy with redshift-drift, Phys. Rev. D 86, 123001 (2012)
CrossRef ADS Google scholar
[10]
J. J. Geng, J. F. Zhang, and X. Zhang, Quantifying the impact of future Sandage−Loeb test data on dark energy constraints, J. Cosmol. Astropart. Phys. 07, 006 (2014)
[11]
J. J. Geng, J. F. Zhang, and X. Zhang, Parameter estimation with Sandage−Loeb test, J. Cosmol. Astropart. Phys. 12, 018 (2014)
[12]
J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Redshift drift exploration for interacting dark energy, Eur. Phys. J. C 75(8), 356 (2015)
CrossRef ADS Google scholar
[13]
J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, , Cosmic dynamics in the era of extremely large telescopes, Mon. Not. Roy. Astron. Soc 386, 1192 (2008)
CrossRef ADS Google scholar
[14]
P. J. E. Peebles and B. Ratra, Cosmology with a time variable cosmological constant, Astrophys. J. 325, L17 (1988)
CrossRef ADS Google scholar
[15]
R. R. Caldwell, Spintessence! New models for dark matter and dark energy, Phys. Lett. B 545, 23 (2002)
CrossRef ADS Google scholar
[16]
C. Armendariz-Picon, T. Damour, and V. Mukhanov, k-inflation, Phys. Lett. B 458, 209 (1999)
[17]
A. Y. Kamenshchik, U. Moschella, and V. Pasquier, An Alternative to quintessence, Phys. Lett. B 511, 265 (2001)
CrossRef ADS Google scholar
[18]
X. Zhang, F. Q. Wu, and J. F. Zhang, New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter, J. Cosmol. Astropart. Phys. 01, 003 (2006)
[19]
T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D 66, 021301 (2002)
CrossRef ADS Google scholar
[20]
M. Li, A model of holographic dark energy, Phys. Lett. B 603, 1 (2004)
CrossRef ADS Google scholar
[21]
X. Zhang and F. Q. Wu, Constraints on holographic dark energy from latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations, Phys. Rev. D 76, 023502 (2007)
CrossRef ADS Google scholar
[22]
X. Zhang, Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model, Phys. Lett. B 683, 81 (2010)
CrossRef ADS Google scholar
[23]
Y. H. Li, S. Wang, X. D. Li, and X. Zhang, Holographic dark energy in a Universe with spatial curvature and massive neutrinos: A fullMarkov chainMonte Carlo exploration, J. Cosmol. Astropart. Phys. 02, 033 (2013)
[24]
H. Wei, R. G. Cai, and D. F. Zeng, Hessence: A new view of quintom dark energy, Class. Quant. Grav. 22, 3189 (2005)
CrossRef ADS Google scholar
[25]
W. Zhao and Y. Zhang, The state equation of the Yang−Mills field dark energy models, Class. Quant. Grav. 23, 3405 (2006)
CrossRef ADS Google scholar
[26]
X. Zhang, Reconstructing holographic quintessence, Phys. Lett. B 648, 1 (2007)
CrossRef ADS Google scholar
[27]
Y. H. Li, J. F. Zhang, and X. Zhang, Parametrized post-Friedmann framework for interacting dark energy, Phys. Rev. D 90, 063005 (2014)
CrossRef ADS Google scholar
[28]
Y. H. Li, J. F. Zhang, and X. Zhang, Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach, Phys. Rev. D 90, 123007 (2014)
CrossRef ADS Google scholar
[29]
S. Wang, J. J. Geng, Y. L. Hu, and X. Zhang, Revisit of constraints on holographic dark energy: SNLS3 dataset with the effects of time-varying β and different light-curve fitters, Sci. China Phys. Mech. Astron. 58(1), 019801 (2015)
CrossRef ADS Google scholar
[30]
M. Zhang, C. Y. Sun, Z. Y. Yang, and R. H. Yue, Cosmological evolution of quintessence with a sign-changing interaction in dark sector, Sci. China- Phys. Mech. Astron. 57(9), 1805 (2014)
CrossRef ADS Google scholar
[31]
Y. Z. Hu, M. Li, X. D. Li, and Z. H. Zhang, Investigating the possibility of a turning point in the dark energy equation of state, Sci. China- Phys. Mech. Astron. 57(8), 1607 (2014)
CrossRef ADS Google scholar
[32]
J. B. Lu, L. D. Chen, L. X. Xu, and T. Q. Li, Comparing the VGCG model as the unification of dark sectors with observations, Sci. China- Phys. Mech. Astron. 57(4), 796−800 (2014)
CrossRef ADS Google scholar
[33]
J. F. Zhang, L. A. Zhao, and X. Zhang, Revisiting the interacting model of new agegraphic dark energy, Sci. China- Phys. Mech. Astron. 57(2), 387 (2014)
CrossRef ADS Google scholar
[34]
X. X. Duan, Y. C. Li, and C. J. Gao, Constraining the lattice fluid dark energy from SNe Ia, BAO and OHD, Sci. China- Phys. Mech. Astron. 56(6), 1220 (2013)
CrossRef ADS Google scholar
[35]
S. Wang, Y. Z. Wang, J. J. Geng, and X. Zhang, Effects of time-varying β in SNLS3 on constraining interacting dark energy models, Eur. Phys. J. C 74(11), 3148 (2014)
CrossRef ADS Google scholar
[36]
J. F. Zhang, M. M. Zhao, Y. H. Li, and X. Zhang, Neutrinos in the holographic dark energy model: Constraints from latest measurements of expansion history and growth of structure, J. Cosmol. Astropart. Phys. 04, 038 (2015)
[37]
J. F. Zhang, M. M. Zhao, J. L. Cui, and X. Zhang, Revisiting the holographic dark energy in a non-flat universe: Alternative model and cosmological parameter constraints, Eur. Phys. J. C 74(11), 3178 (2014)
CrossRef ADS Google scholar
[38]
M. Li, X. D. Li, S. Wang, and Y. Wang, Dark energy: A brief review, Front. Phys. 8(6), 828 (2013)
CrossRef ADS Google scholar
[39]
V. Sahni and S. Habib, Does inflationary particle production suggest Omega(m) less than 1? Phys. Rev. Lett. 81, 1766 (1998)
CrossRef ADS Google scholar
[40]
L. Parker and A. Raval, Nonperturbative effects of vacuum energy on the recent expansion of the universe, Phys. Rev. D 60, 063512 (1999)
CrossRef ADS Google scholar
[41]
G. Dvali, G. Gabadadze, and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485, 208 (2000)
CrossRef ADS Google scholar
[42]
S. Nojiri, S. D. Odintsov, and M. Sasaki, Gauss−Bonnet dark energy, Phys. Rev. D 71, 123509 (2005)
CrossRef ADS Google scholar
[43]
A. Nicolis, R. Rattazzi, and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79, 064036 (2009)
CrossRef ADS Google scholar
[44]
W. Hu and I. Sawicki, Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D 76, 064004 (2007)
CrossRef ADS Google scholar
[45]
A. A. Starobinsky, Disappearing cosmological constant in f(R) gravity, J. Exp. Theor. Phys. Lett. 86, 157 (2007)
CrossRef ADS Google scholar
[46]
G. R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys. Rev. D 79, 124019 (2009)
CrossRef ADS Google scholar
[47]
E. V. Linder, Einstein’s other gravity and the acceleration of the universe, Phys. Rev. D 81, 127301 (2010)
CrossRef ADS Google scholar
[48]
T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, f(R, T) gravity, Phys. Rev. D 84, 024020 (2011)
CrossRef ADS Google scholar
[49]
P. Wu and H. W. Yu, The dynamical behavior of f(T) theory, Phys. Lett. B 692, 176 (2010)
CrossRef ADS Google scholar
[50]
R. Zheng and Q. G. Huang, Growth factor in f(T) gravity, J. Cosmol. Astropart. Phys. 03, 002 (2011)
[51]
W. Tower, Modified entropic gravity revisited, Sci. China-Phys. Mech. Astron. 57(9), 1623 (2014)
CrossRef ADS Google scholar
[52]
J. Wu, Z. X. Li, P. X. Wu, and H. W. Yu, Constrains on f(T) gravity with the strong gravitational lensing data, Sci. China- Phys. Mech. Astron. 57(5), 988−993 (2014)
CrossRef ADS Google scholar
[53]
Y. K. Tang, H. S. Zhang, C. Y. Chen, and X. Z. Li, Fluctuation with dust of de Sitter ground state of scalar-tensor gravity, Sci. China- Phys. Mech. Astron. 57(3), 411−417(2014)
CrossRef ADS Google scholar
[54]
S. Wang, Y. Z. Wang, and X. Zhang, Effects of a timevarying color-luminosity parameter β on the cosmological constraints of modified gravity models, Commun. Theor. Phys. 62(6), 927 (2014)
CrossRef ADS Google scholar
[55]
J. F. Zhang, Y. H. Li, and X. Zhang, Measuring growth index in a universe with sterile neutrinos, Phys. Lett. B 739, 102 (2014)
CrossRef ADS Google scholar
[56]
Y. H. Li, J. F. Zhang, and X. Zhang, Probing f(R) cosmology with sterile neutrinos via measurements of scaledependent growth rate of structure, Phys. Lett. B 744, 213 (2015)
CrossRef ADS Google scholar
[57]
A. Conley, , Supernova constraints and systematic uncertainties from the first 3 years of the supernova legacy survey, Astrophys. J. Suppl. 192, 1 (2011)
CrossRef ADS Google scholar
[58]
G. Hinshaw, , Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Suppl. 208, 19 (2013)
CrossRef ADS Google scholar
[59]
F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, , The 6dF galaxy survey: Baryon acoustic oscillations and the local hubble constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011)
CrossRef ADS Google scholar
[60]
N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta, and E. Kazin, A 2 percent distance to z=0.35 by reconstructing baryon acoustic oscillations- I. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427(3), 2132 (2012)
CrossRef ADS Google scholar
[61]
L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, , The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample, Mon. Not. Roy. Astron. Soc. 427(4), 3435 (2013)
CrossRef ADS Google scholar
[62]
C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, T. Davis, , The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z<1, Mon. Not. Roy. Astron. Soc. 425, 405 (2012)
CrossRef ADS Google scholar
[63]
Y. Wang and S. Wang, Distance priors from planck and dark energy constraints from current data, Phys. Rev. D 88, 043522 (2013)
CrossRef ADS Google scholar
[64]
A. G. Riess, , A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3, Astrophys. J. 730, 119 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(377 KB)

Accesses

Citations

Detail

Sections
Recommended

/