Redshift drift constraints on f(T) gravity

Jia-Jia Geng , Rui-Yun Guo , Dong-Ze He , Jing-Fei Zhang , Xin Zhang

Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 109501

PDF (377KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 109501 DOI: 10.1007/s11467-015-0507-8
RESEARCH ARTICLE

Redshift drift constraints on f(T) gravity

Author information +
History +
PDF (377KB)

Abstract

We explore the impact of the Sandage−Loeb (SL) test on the precision of cosmological constraints for f(T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the “redshift desert” of 2z5. To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f(T) gravity theories. Two typical f(T) models are considered, the power-law model f(T)PL and the exponential-form model f(T)EXP. The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm and the Hubble constant H0 in other cosmological observations. For the considered f(T) models, a 30-year observation of the SL test can improve the constraint precision of Ωm and H0 enormously but cannot effectively improve the constraint precision of the model parameters.

Keywords

redshift drift / cosmological constraints / dark energy / modified gravity / f(T) gravity

Cite this article

Download citation ▾
Jia-Jia Geng, Rui-Yun Guo, Dong-Ze He, Jing-Fei Zhang, Xin Zhang. Redshift drift constraints on f(T) gravity. Front. Phys., 2015, 10(5): 109501 DOI:10.1007/s11467-015-0507-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Sandage, The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes, Astrophys. J. 136, 319 (1962)

[2]

A. Loeb, Direct measurement of cosmological parameters from the cosmic deceleration of extragalactic objects, Astrophys. J. 499, L111 (1998)

[3]

P. S. Corasaniti, D. Huterer, and A. Melchiorri, Exploring the dark energy redshift desert with the Sandage−Loeb test, Phys. Rev. D 75, 062001 (2007)

[4]

A. Balbi and C. Quercellini, The time evolution of cosmological redshift as a test of dark energy, Mon. Not. Roy. Astron. Soc 382, 1623 (2007)

[5]

H. B. Zhang, W. Zhong, Z. H. Zhu, and S. He, Exploring holographic dark energy model with Sandage−Leob test, Phys. Rev. D 76, 123508 (2007)

[6]

J. Zhang, L. Zhang, and X. Zhang, Sandage−Loeb test for the new agegraphic and Ricci dark energy models, Phys. Lett. B 691, 11 (2010)

[7]

Z. Li, K. Liao, P. Wu, H. Yu, and Z. H. Zhu, Probing modified gravity theories with the Sandage−Loeb test, Phys. Rev. D 88, 2, 023003 (2013)

[8]

S. Yuan, S. Liu, and T. J. Zhang, Breaking through the high redshift bottleneck of observational Hubble parameter Data: The Sandage−Loeb signal Scheme, J. Cosmol. Astropart. Phys. 02, 025 (2015)

[9]

M. Martinelli, S. Pandolfi, C. J. A. P. Martins, and P. E. Vielzeuf, Probing dark energy with redshift-drift, Phys. Rev. D 86, 123001 (2012)

[10]

J. J. Geng, J. F. Zhang, and X. Zhang, Quantifying the impact of future Sandage−Loeb test data on dark energy constraints, J. Cosmol. Astropart. Phys. 07, 006 (2014)

[11]

J. J. Geng, J. F. Zhang, and X. Zhang, Parameter estimation with Sandage−Loeb test, J. Cosmol. Astropart. Phys. 12, 018 (2014)

[12]

J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Redshift drift exploration for interacting dark energy, Eur. Phys. J. C 75(8), 356 (2015)

[13]

J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, , Cosmic dynamics in the era of extremely large telescopes, Mon. Not. Roy. Astron. Soc 386, 1192 (2008)

[14]

P. J. E. Peebles and B. Ratra, Cosmology with a time variable cosmological constant, Astrophys. J. 325, L17 (1988)

[15]

R. R. Caldwell, Spintessence! New models for dark matter and dark energy, Phys. Lett. B 545, 23 (2002)

[16]

C. Armendariz-Picon, T. Damour, and V. Mukhanov, k-inflation, Phys. Lett. B 458, 209 (1999)

[17]

A. Y. Kamenshchik, U. Moschella, and V. Pasquier, An Alternative to quintessence, Phys. Lett. B 511, 265 (2001)

[18]

X. Zhang, F. Q. Wu, and J. F. Zhang, New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter, J. Cosmol. Astropart. Phys. 01, 003 (2006)

[19]

T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D 66, 021301 (2002)

[20]

M. Li, A model of holographic dark energy, Phys. Lett. B 603, 1 (2004)

[21]

X. Zhang and F. Q. Wu, Constraints on holographic dark energy from latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations, Phys. Rev. D 76, 023502 (2007)

[22]

X. Zhang, Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model, Phys. Lett. B 683, 81 (2010)

[23]

Y. H. Li, S. Wang, X. D. Li, and X. Zhang, Holographic dark energy in a Universe with spatial curvature and massive neutrinos: A fullMarkov chainMonte Carlo exploration, J. Cosmol. Astropart. Phys. 02, 033 (2013)

[24]

H. Wei, R. G. Cai, and D. F. Zeng, Hessence: A new view of quintom dark energy, Class. Quant. Grav. 22, 3189 (2005)

[25]

W. Zhao and Y. Zhang, The state equation of the Yang−Mills field dark energy models, Class. Quant. Grav. 23, 3405 (2006)

[26]

X. Zhang, Reconstructing holographic quintessence, Phys. Lett. B 648, 1 (2007)

[27]

Y. H. Li, J. F. Zhang, and X. Zhang, Parametrized post-Friedmann framework for interacting dark energy, Phys. Rev. D 90, 063005 (2014)

[28]

Y. H. Li, J. F. Zhang, and X. Zhang, Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach, Phys. Rev. D 90, 123007 (2014)

[29]

S. Wang, J. J. Geng, Y. L. Hu, and X. Zhang, Revisit of constraints on holographic dark energy: SNLS3 dataset with the effects of time-varying β and different light-curve fitters, Sci. China Phys. Mech. Astron. 58(1), 019801 (2015)

[30]

M. Zhang, C. Y. Sun, Z. Y. Yang, and R. H. Yue, Cosmological evolution of quintessence with a sign-changing interaction in dark sector, Sci. China- Phys. Mech. Astron. 57(9), 1805 (2014)

[31]

Y. Z. Hu, M. Li, X. D. Li, and Z. H. Zhang, Investigating the possibility of a turning point in the dark energy equation of state, Sci. China- Phys. Mech. Astron. 57(8), 1607 (2014)

[32]

J. B. Lu, L. D. Chen, L. X. Xu, and T. Q. Li, Comparing the VGCG model as the unification of dark sectors with observations, Sci. China- Phys. Mech. Astron. 57(4), 796−800 (2014)

[33]

J. F. Zhang, L. A. Zhao, and X. Zhang, Revisiting the interacting model of new agegraphic dark energy, Sci. China- Phys. Mech. Astron. 57(2), 387 (2014)

[34]

X. X. Duan, Y. C. Li, and C. J. Gao, Constraining the lattice fluid dark energy from SNe Ia, BAO and OHD, Sci. China- Phys. Mech. Astron. 56(6), 1220 (2013)

[35]

S. Wang, Y. Z. Wang, J. J. Geng, and X. Zhang, Effects of time-varying β in SNLS3 on constraining interacting dark energy models, Eur. Phys. J. C 74(11), 3148 (2014)

[36]

J. F. Zhang, M. M. Zhao, Y. H. Li, and X. Zhang, Neutrinos in the holographic dark energy model: Constraints from latest measurements of expansion history and growth of structure, J. Cosmol. Astropart. Phys. 04, 038 (2015)

[37]

J. F. Zhang, M. M. Zhao, J. L. Cui, and X. Zhang, Revisiting the holographic dark energy in a non-flat universe: Alternative model and cosmological parameter constraints, Eur. Phys. J. C 74(11), 3178 (2014)

[38]

M. Li, X. D. Li, S. Wang, and Y. Wang, Dark energy: A brief review, Front. Phys. 8(6), 828 (2013)

[39]

V. Sahni and S. Habib, Does inflationary particle production suggest Omega(m) less than 1? Phys. Rev. Lett. 81, 1766 (1998)

[40]

L. Parker and A. Raval, Nonperturbative effects of vacuum energy on the recent expansion of the universe, Phys. Rev. D 60, 063512 (1999)

[41]

G. Dvali, G. Gabadadze, and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485, 208 (2000)

[42]

S. Nojiri, S. D. Odintsov, and M. Sasaki, Gauss−Bonnet dark energy, Phys. Rev. D 71, 123509 (2005)

[43]

A. Nicolis, R. Rattazzi, and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79, 064036 (2009)

[44]

W. Hu and I. Sawicki, Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D 76, 064004 (2007)

[45]

A. A. Starobinsky, Disappearing cosmological constant in f(R) gravity, J. Exp. Theor. Phys. Lett. 86, 157 (2007)

[46]

G. R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys. Rev. D 79, 124019 (2009)

[47]

E. V. Linder, Einstein’s other gravity and the acceleration of the universe, Phys. Rev. D 81, 127301 (2010)

[48]

T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, f(R, T) gravity, Phys. Rev. D 84, 024020 (2011)

[49]

P. Wu and H. W. Yu, The dynamical behavior of f(T) theory, Phys. Lett. B 692, 176 (2010)

[50]

R. Zheng and Q. G. Huang, Growth factor in f(T) gravity, J. Cosmol. Astropart. Phys. 03, 002 (2011)

[51]

W. Tower, Modified entropic gravity revisited, Sci. China-Phys. Mech. Astron. 57(9), 1623 (2014)

[52]

J. Wu, Z. X. Li, P. X. Wu, and H. W. Yu, Constrains on f(T) gravity with the strong gravitational lensing data, Sci. China- Phys. Mech. Astron. 57(5), 988−993 (2014)

[53]

Y. K. Tang, H. S. Zhang, C. Y. Chen, and X. Z. Li, Fluctuation with dust of de Sitter ground state of scalar-tensor gravity, Sci. China- Phys. Mech. Astron. 57(3), 411−417(2014)

[54]

S. Wang, Y. Z. Wang, and X. Zhang, Effects of a timevarying color-luminosity parameter β on the cosmological constraints of modified gravity models, Commun. Theor. Phys. 62(6), 927 (2014)

[55]

J. F. Zhang, Y. H. Li, and X. Zhang, Measuring growth index in a universe with sterile neutrinos, Phys. Lett. B 739, 102 (2014)

[56]

Y. H. Li, J. F. Zhang, and X. Zhang, Probing f(R) cosmology with sterile neutrinos via measurements of scaledependent growth rate of structure, Phys. Lett. B 744, 213 (2015)

[57]

A. Conley, , Supernova constraints and systematic uncertainties from the first 3 years of the supernova legacy survey, Astrophys. J. Suppl. 192, 1 (2011)

[58]

G. Hinshaw, , Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Suppl. 208, 19 (2013)

[59]

F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, , The 6dF galaxy survey: Baryon acoustic oscillations and the local hubble constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011)

[60]

N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta, and E. Kazin, A 2 percent distance to z=0.35 by reconstructing baryon acoustic oscillations- I. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427(3), 2132 (2012)

[61]

L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, , The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample, Mon. Not. Roy. Astron. Soc. 427(4), 3435 (2013)

[62]

C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, T. Davis, , The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z<1, Mon. Not. Roy. Astron. Soc. 425, 405 (2012)

[63]

Y. Wang and S. Wang, Distance priors from planck and dark energy constraints from current data, Phys. Rev. D 88, 043522 (2013)

[64]

A. G. Riess, , A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3, Astrophys. J. 730, 119 (2011)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (377KB)

842

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/