Trapped Bose−Einstein condensates in synthetic magnetic field

Qiang Zhao , Qiang Gu

Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 100306

PDF (290KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 100306 DOI: 10.1007/s11467-015-0505-x
RESEARCH ARTICLE

Trapped Bose−Einstein condensates in synthetic magnetic field

Author information +
History +
PDF (290KB)

Abstract

The rotational properties of Bose−Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross−Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strengthening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified.

Keywords

Bose−Einstein condensates / synthetic magnetic field / vortices

Cite this article

Download citation ▾
Qiang Zhao, Qiang Gu. Trapped Bose−Einstein condensates in synthetic magnetic field. Front. Phys., 2015, 10(5): 100306 DOI:10.1007/s11467-015-0505-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. J. Donnelly, Quantum Vortices in Helium II, Cambridge: Cambridge University Press, 1991

[2]

D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, London: Taylor & Francis, 1990

[3]

G. E. Volovik, The Universe in a Helium Droplet, Oxford: Clarendon, 2003

[4]

G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Vortices in high-temperature superconductors, Rev. Mod. Phys. 66(4), 1125 (1994)

[5]

A. L. Fetter, Rotating trapped Bose−Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)

[6]

M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose−Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)

[7]

K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)

[8]

F. Chevy, K. W. Madison, and J. Dalibard, Measurement of the angular momentum of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 85(11), 2223 (2000)

[9]

C. Raman, J. R. Abo-Shaer, J. M. Vogels, K. Xu, and W. Ketterle, Vortex nucleation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 87(21), 210402 (2001)

[10]

J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose−Einstein condensates, Science 292(5516), 476 (2001)

[11]

S.-W. Song, L. Wen, C.-F. Liu, S.-C. Gou, and W.-M. Liu, Ground states, solitons and spin textures in spin-1 Bose− Einstein condensates, Front. Phys. 8(3), 302 (2013)

[12]

V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Fast rotation of a Bose−Einstein condensate, Phys. Rev. Lett. 92(5), 050403 (2004)

[13]

V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Rapidly rotating Bose−Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett. 92(4), 040404 (2004)

[14]

R. P. Feynman, Application of Quantum Mechanics to Liquid Helium, Amsterdam: North-Holland, 1955

[15]

M. Tsubota, K. Kasamatsu, and M. Ueda, Vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 65(2), 023603 (2002)

[16]

K. Kasamatsu, M. Tsubota, and M. Ueda, Nonlinear dynamics of vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 67(3), 033610 (2003)

[17]

D. L. Feder and C. W. Clark, Superfluid-to-solid crossover in a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190401 (2001)

[18]

P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Driving Bose−Einstein-condensate vorticity with a rotating normal cloud, Phys. Rev. Lett. 87(21), 210403 (2001)

[19]

Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose−Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett. 102(13), 130401 (2009)

[20]

Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462(7273), 628 (2009)

[21]

L. B. Taylor, R. M. W. van Bijnen, D. H. J. O’Dell, N. G. Parker, S. J. J. M. F. Kokkelmans, and A. M. Martin, Synthetic magnetohydrodynamics in Bose−Einstein condensates and routes to vortex nucleation, Phys. Rev. A 84(2), 021604(R) (2011)

[22]

M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys . Rev. Lett. 107(25), 255301 (2011)

[23]

Y. Nakano, K. Kasamatsu, and T. Matsui, Finitetemperature phase structures of hard-core bosons in an optical lattice with an effective magnetic field, Phys. Rev. A 85(2), 023622 (2012)

[24]

J. Xu and Q. Gu, Berezinskii−Kosterlitz−Thouless transition of two-dimensional Bose gases in a synthetic magnetic field, Phys. Rev. A 85(4), 043608 (2012)

[25]

A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, and M. Lewenstein, Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett. 112(4), 043001 (2014)

[26]

C. E. Creffield and F. Sols, Generation of uniform synthetic magnetic fields by split driving of an optical lattice, Phys. Rev. A 90(2), 023636 (2014)

[27]

J.-H. Fan, Q. Gu, and W. Guo, Thermodynamics of charged ideal Bose gases in a trap under a magnetic field, Chin. Phys. Lett. 28(6), 060306 (2011)

[28]

Y. Li and Q. Gu, Thermodynamic properties of rotating trapped ideal Bose gases, Phys. Lett. A 378(18−19), 1233 (2014)

[29]

W. Bao, I.-L. Chern, and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose−Einstein condensates, J. Comp. Phys. 219(2), 836 (2006)

[30]

S. Sinha and Y. Castin, Dynamic Instability of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190402 (2001)

[31]

Y. Zhao, J. An, and C.-D. Gong, Vortex competition in a rotating two-component dipolar Bose−Einstein condensate, Phys. Rev. A 87(1), 013605 (2013)

[32]

G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, and M. Inguscio, Double species Bose−Einstein condensate with tunable interspecies interactions, Phys. Rev. Lett. 100(21), 210402 (2008)

[33]

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)

[34]

L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose−Einstein condensation in trapped dipolar gases, Phys. Rev. Lett. 85(9), 1791 (2000)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (290KB)

1159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/