Trapped Bose−Einstein condensates in synthetic magnetic field
Qiang Zhao, Qiang Gu
Trapped Bose−Einstein condensates in synthetic magnetic field
The rotational properties of Bose−Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross−Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strengthening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified.
Bose−Einstein condensates / synthetic magnetic field / vortices
[1] |
R. J. Donnelly, Quantum Vortices in Helium II, Cambridge: Cambridge University Press, 1991
|
[2] |
D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, London: Taylor & Francis, 1990
|
[3] |
G. E. Volovik, The Universe in a Helium Droplet, Oxford: Clarendon, 2003
|
[4] |
G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Vortices in high-temperature superconductors, Rev. Mod. Phys. 66(4), 1125 (1994)
CrossRef
ADS
Google scholar
|
[5] |
A. L. Fetter, Rotating trapped Bose−Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)
CrossRef
ADS
Google scholar
|
[6] |
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose−Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)
CrossRef
ADS
Google scholar
|
[7] |
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)
CrossRef
ADS
Google scholar
|
[8] |
F. Chevy, K. W. Madison, and J. Dalibard, Measurement of the angular momentum of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 85(11), 2223 (2000)
CrossRef
ADS
Google scholar
|
[9] |
C. Raman, J. R. Abo-Shaer, J. M. Vogels, K. Xu, and W. Ketterle, Vortex nucleation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 87(21), 210402 (2001)
CrossRef
ADS
Google scholar
|
[10] |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose−Einstein condensates, Science 292(5516), 476 (2001)
CrossRef
ADS
Google scholar
|
[11] |
S.-W. Song, L. Wen, C.-F. Liu, S.-C. Gou, and W.-M. Liu, Ground states, solitons and spin textures in spin-1 Bose− Einstein condensates, Front. Phys. 8(3), 302 (2013)
CrossRef
ADS
Google scholar
|
[12] |
V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Fast rotation of a Bose−Einstein condensate, Phys. Rev. Lett. 92(5), 050403 (2004)
CrossRef
ADS
Google scholar
|
[13] |
V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Rapidly rotating Bose−Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett. 92(4), 040404 (2004)
CrossRef
ADS
Google scholar
|
[14] |
R. P. Feynman, Application of Quantum Mechanics to Liquid Helium, Amsterdam: North-Holland, 1955
|
[15] |
M. Tsubota, K. Kasamatsu, and M. Ueda, Vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 65(2), 023603 (2002)
CrossRef
ADS
Google scholar
|
[16] |
K. Kasamatsu, M. Tsubota, and M. Ueda, Nonlinear dynamics of vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 67(3), 033610 (2003)
CrossRef
ADS
Google scholar
|
[17] |
D. L. Feder and C. W. Clark, Superfluid-to-solid crossover in a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190401 (2001)
CrossRef
ADS
Google scholar
|
[18] |
P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Driving Bose−Einstein-condensate vorticity with a rotating normal cloud, Phys. Rev. Lett. 87(21), 210403 (2001)
CrossRef
ADS
Google scholar
|
[19] |
Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose−Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett. 102(13), 130401 (2009)
CrossRef
ADS
Google scholar
|
[20] |
Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462(7273), 628 (2009)
CrossRef
ADS
Google scholar
|
[21] |
L. B. Taylor, R. M. W. van Bijnen, D. H. J. O’Dell, N. G. Parker, S. J. J. M. F. Kokkelmans, and A. M. Martin, Synthetic magnetohydrodynamics in Bose−Einstein condensates and routes to vortex nucleation, Phys. Rev. A 84(2), 021604(R) (2011)
|
[22] |
M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys . Rev. Lett. 107(25), 255301 (2011)
CrossRef
ADS
Google scholar
|
[23] |
Y. Nakano, K. Kasamatsu, and T. Matsui, Finitetemperature phase structures of hard-core bosons in an optical lattice with an effective magnetic field, Phys. Rev. A 85(2), 023622 (2012)
CrossRef
ADS
Google scholar
|
[24] |
J. Xu and Q. Gu, Berezinskii−Kosterlitz−Thouless transition of two-dimensional Bose gases in a synthetic magnetic field, Phys. Rev. A 85(4), 043608 (2012)
CrossRef
ADS
Google scholar
|
[25] |
A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, and M. Lewenstein, Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett. 112(4), 043001 (2014)
CrossRef
ADS
Google scholar
|
[26] |
C. E. Creffield and F. Sols, Generation of uniform synthetic magnetic fields by split driving of an optical lattice, Phys. Rev. A 90(2), 023636 (2014)
CrossRef
ADS
Google scholar
|
[27] |
J.-H. Fan, Q. Gu, and W. Guo, Thermodynamics of charged ideal Bose gases in a trap under a magnetic field, Chin. Phys. Lett. 28(6), 060306 (2011)
CrossRef
ADS
Google scholar
|
[28] |
Y. Li and Q. Gu, Thermodynamic properties of rotating trapped ideal Bose gases, Phys. Lett. A 378(18−19), 1233 (2014)
CrossRef
ADS
Google scholar
|
[29] |
W. Bao, I.-L. Chern, and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose−Einstein condensates, J. Comp. Phys. 219(2), 836 (2006)
CrossRef
ADS
Google scholar
|
[30] |
S. Sinha and Y. Castin, Dynamic Instability of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190402 (2001)
CrossRef
ADS
Google scholar
|
[31] |
Y. Zhao, J. An, and C.-D. Gong, Vortex competition in a rotating two-component dipolar Bose−Einstein condensate, Phys. Rev. A 87(1), 013605 (2013)
CrossRef
ADS
Google scholar
|
[32] |
G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, and M. Inguscio, Double species Bose−Einstein condensate with tunable interspecies interactions, Phys. Rev. Lett. 100(21), 210402 (2008)
CrossRef
ADS
Google scholar
|
[33] |
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef
ADS
Google scholar
|
[34] |
L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose−Einstein condensation in trapped dipolar gases, Phys. Rev. Lett. 85(9), 1791 (2000)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |