Trapped Bose−Einstein condensates in synthetic magnetic field

Qiang Zhao, Qiang Gu

PDF(290 KB)
PDF(290 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 100306. DOI: 10.1007/s11467-015-0505-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Trapped Bose−Einstein condensates in synthetic magnetic field

Author information +
History +

Abstract

The rotational properties of Bose−Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross−Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strengthening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified.

Keywords

Bose−Einstein condensates / synthetic magnetic field / vortices

Cite this article

Download citation ▾
Qiang Zhao, Qiang Gu. Trapped Bose−Einstein condensates in synthetic magnetic field. Front. Phys., 2015, 10(5): 100306 https://doi.org/10.1007/s11467-015-0505-x

References

[1]
R. J. Donnelly, Quantum Vortices in Helium II, Cambridge: Cambridge University Press, 1991
[2]
D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, London: Taylor & Francis, 1990
[3]
G. E. Volovik, The Universe in a Helium Droplet, Oxford: Clarendon, 2003
[4]
G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Vortices in high-temperature superconductors, Rev. Mod. Phys. 66(4), 1125 (1994)
CrossRef ADS Google scholar
[5]
A. L. Fetter, Rotating trapped Bose−Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)
CrossRef ADS Google scholar
[6]
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose−Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)
CrossRef ADS Google scholar
[7]
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)
CrossRef ADS Google scholar
[8]
F. Chevy, K. W. Madison, and J. Dalibard, Measurement of the angular momentum of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 85(11), 2223 (2000)
CrossRef ADS Google scholar
[9]
C. Raman, J. R. Abo-Shaer, J. M. Vogels, K. Xu, and W. Ketterle, Vortex nucleation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 87(21), 210402 (2001)
CrossRef ADS Google scholar
[10]
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose−Einstein condensates, Science 292(5516), 476 (2001)
CrossRef ADS Google scholar
[11]
S.-W. Song, L. Wen, C.-F. Liu, S.-C. Gou, and W.-M. Liu, Ground states, solitons and spin textures in spin-1 Bose− Einstein condensates, Front. Phys. 8(3), 302 (2013)
CrossRef ADS Google scholar
[12]
V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Fast rotation of a Bose−Einstein condensate, Phys. Rev. Lett. 92(5), 050403 (2004)
CrossRef ADS Google scholar
[13]
V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Rapidly rotating Bose−Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett. 92(4), 040404 (2004)
CrossRef ADS Google scholar
[14]
R. P. Feynman, Application of Quantum Mechanics to Liquid Helium, Amsterdam: North-Holland, 1955
[15]
M. Tsubota, K. Kasamatsu, and M. Ueda, Vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 65(2), 023603 (2002)
CrossRef ADS Google scholar
[16]
K. Kasamatsu, M. Tsubota, and M. Ueda, Nonlinear dynamics of vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 67(3), 033610 (2003)
CrossRef ADS Google scholar
[17]
D. L. Feder and C. W. Clark, Superfluid-to-solid crossover in a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190401 (2001)
CrossRef ADS Google scholar
[18]
P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Driving Bose−Einstein-condensate vorticity with a rotating normal cloud, Phys. Rev. Lett. 87(21), 210403 (2001)
CrossRef ADS Google scholar
[19]
Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose−Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett. 102(13), 130401 (2009)
CrossRef ADS Google scholar
[20]
Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462(7273), 628 (2009)
CrossRef ADS Google scholar
[21]
L. B. Taylor, R. M. W. van Bijnen, D. H. J. O’Dell, N. G. Parker, S. J. J. M. F. Kokkelmans, and A. M. Martin, Synthetic magnetohydrodynamics in Bose−Einstein condensates and routes to vortex nucleation, Phys. Rev. A 84(2), 021604(R) (2011)
[22]
M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys . Rev. Lett. 107(25), 255301 (2011)
CrossRef ADS Google scholar
[23]
Y. Nakano, K. Kasamatsu, and T. Matsui, Finitetemperature phase structures of hard-core bosons in an optical lattice with an effective magnetic field, Phys. Rev. A 85(2), 023622 (2012)
CrossRef ADS Google scholar
[24]
J. Xu and Q. Gu, Berezinskii−Kosterlitz−Thouless transition of two-dimensional Bose gases in a synthetic magnetic field, Phys. Rev. A 85(4), 043608 (2012)
CrossRef ADS Google scholar
[25]
A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, and M. Lewenstein, Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett. 112(4), 043001 (2014)
CrossRef ADS Google scholar
[26]
C. E. Creffield and F. Sols, Generation of uniform synthetic magnetic fields by split driving of an optical lattice, Phys. Rev. A 90(2), 023636 (2014)
CrossRef ADS Google scholar
[27]
J.-H. Fan, Q. Gu, and W. Guo, Thermodynamics of charged ideal Bose gases in a trap under a magnetic field, Chin. Phys. Lett. 28(6), 060306 (2011)
CrossRef ADS Google scholar
[28]
Y. Li and Q. Gu, Thermodynamic properties of rotating trapped ideal Bose gases, Phys. Lett. A 378(18−19), 1233 (2014)
CrossRef ADS Google scholar
[29]
W. Bao, I.-L. Chern, and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose−Einstein condensates, J. Comp. Phys. 219(2), 836 (2006)
CrossRef ADS Google scholar
[30]
S. Sinha and Y. Castin, Dynamic Instability of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190402 (2001)
CrossRef ADS Google scholar
[31]
Y. Zhao, J. An, and C.-D. Gong, Vortex competition in a rotating two-component dipolar Bose−Einstein condensate, Phys. Rev. A 87(1), 013605 (2013)
CrossRef ADS Google scholar
[32]
G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, and M. Inguscio, Double species Bose−Einstein condensate with tunable interspecies interactions, Phys. Rev. Lett. 100(21), 210402 (2008)
CrossRef ADS Google scholar
[33]
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef ADS Google scholar
[34]
L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose−Einstein condensation in trapped dipolar gases, Phys. Rev. Lett. 85(9), 1791 (2000)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(290 KB)

Accesses

Citations

Detail

Sections
Recommended

/