Role of confinement in water solidification under electric fields
Guo-Xi Nie, Yu Wang, Ji-Ping Huang
Role of confinement in water solidification under electric fields
In contrast to the common belief that confinement promotes water solidification, here we show by molecular dynamics simulations that confinement can impede water solidification under electric fields. The behavior is evidenced by the increase in critical electric field strength for water solidification as the confinement progresses. We also show that the solidification occurs more easily with a parallel field than a perpendicular one. We understand and generalize these results by developing an energy theory incorporated with the anisotropic Clausius−Mossotti equation. It is revealed that the underlying mechanism lies in the confinement effect on molecules’ electro-orientations. Thus, it becomes possible to achieve electro-freezing (i.e., room-temperature ice) by choosing both confinement and electric fields appropriately.
molecular dynamics simulations / water / electric fields / confinement
[1] |
A. Cupane, M. Fomina, I. Piazza, J. Peters, and G. Schiro, Experimental evidence for a liquid-liquid crossover in deeply cooled confined water, Phys. Rev. Lett. 113(21), 215701 (2014)
CrossRef
ADS
Google scholar
|
[2] |
A. G. Marín, O. R. Enriquez, P. Brunet, P. Colinet, and J. H. Snoeijer, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett. 113(5), 054301 (2014)
CrossRef
ADS
Google scholar
|
[3] |
Z. Wang, K. H. Liu, P. S. Le, M. D. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)
CrossRef
ADS
Google scholar
|
[4] |
W. J. Cho, J. Kim, J. Lee, T. Keyes, J. E. Straub, and K. S. Kim, Limit of metastability for liquid and vapor phases of water, Phys. Rev. Lett. 112(15), 157802 (2014)
CrossRef
ADS
Google scholar
|
[5] |
K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, Structure and dynamics of water at the pt(111) interface: Molecular dynamics study, J. Chem. Phys. 94(3), 2110 (1991)
CrossRef
ADS
Google scholar
|
[6] |
P. A. Thompson, G. S. Grest, and M. O. Robbins, Phase transitions and universal dynamics in confined films, Phys. Rev. Lett. 68(23), 3448 (1992)
CrossRef
ADS
Google scholar
|
[7] |
R. Zangi and A. E. Mark, Monolayer ice, Phys. Rev. Lett. 91(2), 025502 (2003)
CrossRef
ADS
Google scholar
|
[8] |
R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119(3), 1694 (2003)
CrossRef
ADS
Google scholar
|
[9] |
K. Koga and H. Tanaka, Phase diagram of water between hydrophobic surfaces, J. Chem. Phys. 122(10), 104711 (2005)
CrossRef
ADS
Google scholar
|
[10] |
K. B. Jinesh and J. W. M. Frenken, Experimental evidence for ice formation at room temperature, Phys. Rev. Lett. 101(3), 036101 (2008)
CrossRef
ADS
Google scholar
|
[11] |
I. M. Svishchev and P. G. Kusalik, Crystallization of liquid water in a molecular dynamics simulation, Phys. Rev. Lett. 73(7), 975 (1994)
CrossRef
ADS
Google scholar
|
[12] |
X. Xia and M. L. Berkowitz, Electric-field induced restructuring of water at a platinum-water interface: A molecular dynamics computer simulation, Phys. Rev. Lett. 74(16), 3193 (1995)
CrossRef
ADS
Google scholar
|
[13] |
X. Xia, L. Perera, U. Essmann, and M. L. Berkowitz, The structure of water at platinum/water interfaces molecular dynamics computer simulations, Surf. Sci. 335(1−3), 401 (1995)
CrossRef
ADS
Google scholar
|
[14] |
I. M. Svishchev and P. G. Kusalik, Electrofreezing of liquid water: A microscopic perspective, J. Am. Chem. Soc. 118(3), 649 (1996)
CrossRef
ADS
Google scholar
|
[15] |
I. Borzsák and P. T. Cummings, Electrofreezing of water in molecular dynamics simulation accelerated by oscillatory shear, Phys. Rev. E 56(6), R6279 (1997)
CrossRef
ADS
Google scholar
|
[16] |
G. Sutmann, Structure formation and dynamics of water in strong external electric fields, J. Electroanal. Chem. 450(2), 289 (1998)
CrossRef
ADS
Google scholar
|
[17] |
R. Zangi and A. E. Mark, Electrofreezing of confined water, J. Chem. Phys. 120(15), 7123 (2004)
CrossRef
ADS
Google scholar
|
[18] |
X. Hu, N. Elghobashi-Meinhardt, D. Gembris, and J. C. Smith, Response of water to electric fields at temperatures below the glass transition: A molecular dynamics analysis, J. Chem. Phys. 135(13), 134507 (2011)
CrossRef
ADS
Google scholar
|
[19] |
H. Qiu and W. L. Guo, Electromelting of confined monolayer ice, Phys. Rev. Lett. 110(19), 195701 (2013)
CrossRef
ADS
Google scholar
|
[20] |
E. M. Choi, Y. H. Yoon, S. Lee, and H. Kang, Freezing transition of interfacial water at room temperature under electric fields, Phys. Rev. Lett. 95(8), 085701 (2005)
CrossRef
ADS
Google scholar
|
[21] |
D. L. Scovell, T. D. Pinkerton, V. K. Medvedev, and E. M. Stuve, Phase transitions in vapordeposited water under the influence of high surface electric fields, Surf. Sci. 457(3), 365 (2000)
CrossRef
ADS
Google scholar
|
[22] |
G. Chen, P. Tan, S. Chen, J. P. Huang, W. Wen, and L. Xu, Coalescence of pickering emulsion droplets induced by an electric field, Phys. Rev. Lett. 110(6), 064502 (2013)
CrossRef
ADS
Google scholar
|
[23] |
P. Kim, T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, and J. Aizenberg, Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance, ACS Nano 6(8), 6569 (2012)
CrossRef
ADS
Google scholar
|
[24] |
M. Lee, C. Yim, and S. Jeon, Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators, J. Chem. Phys. 142(4), 041102 (2015)
CrossRef
ADS
Google scholar
|
[25] |
A. Loncaric, K. Dugalic, I. Mihaljevic, L. Jakobek, and V. Pilizota, Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple puree, J. Agric. Food Chem. 62(7), 1674 (2014)
CrossRef
ADS
Google scholar
|
[26] |
T. Inada, T. Koyama, F. Goto, and T. Seto, Ice nucleation in emulsified aqueous solutions of antifreeze protein type III and poly(vinyl alcohol), J. Phys. Chem. B 115(24), 7914 (2011)
CrossRef
ADS
Google scholar
|
[27] |
D. Murakami and K. Yasuoka, Molecular dynamics simulation of quasi-two-dimensional water clusters on ice nucleation protein, J. Chem. Phys. 137(5), 054303 (2012)
CrossRef
ADS
Google scholar
|
[28] |
K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, and M. Havenith, Long-range protein-water dynamics in hyperactive insect antifreeze protein, Proc. Natl. Acad. Sci. USA 110(5), 1617 (2013)
CrossRef
ADS
Google scholar
|
[29] |
P. A. Thompson and M. O. Robbins, Origin of stick-slip motion in boundary lubrication, Science 250(4982), 792 (1990)
CrossRef
ADS
Google scholar
|
[30] |
M. O. Robbins and P. A. Thompson, Critical velocity of stick-slip motion, Science 253(5022), 916 (1991)
CrossRef
ADS
Google scholar
|
[31] |
J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola, Dynamic properties of molecularly thin liquid films, Science 240(4849), 189 (1988)
CrossRef
ADS
Google scholar
|
[32] |
S. Granick, Motions and relaxations of confined liquids, Science 253(5026), 1374 (1991)
CrossRef
ADS
Google scholar
|
[33] |
J. Klein and E. Kumacheva, Confinement-induced phase transitions in simple liquids, Science 269(5225), 816 (1995)
CrossRef
ADS
Google scholar
|
[34] |
Z. Y. Qian and G. H. Wei, Electric-field-induced phase transition of confined water nanofilms between two graphene sheets, J. Phys. Chem. A 118(39), 8922 (2014)
CrossRef
ADS
Google scholar
|
[35] |
X. Y. Zhu, Q. Z. Yuan, and Y. P. Zhao, Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing, Nanoscale 6(10), 5432 (2014)
CrossRef
ADS
Google scholar
|
[36] |
F. Mei, X. Y. Zhou, J. L. Kou, F. M. Wu, C. L.Wang, and H. J. Lu, A transition between bistable ice when coupling electric field and nanoconfinement, J. Chem. Phys. 142(13), 134704 (2015)
CrossRef
ADS
Google scholar
|
[37] |
Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Water-mediated signal multiplication with Y-shaped carbon nanotubes, Proc. Natl. Acad. Sci. USA 106(43), 18120 (2009)
CrossRef
ADS
Google scholar
|
[38] |
Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115(45), 13275 (2011)
CrossRef
ADS
Google scholar
|
[39] |
J. Y. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
CrossRef
ADS
Google scholar
|
[40] |
X. W. Meng and J. P. Huang, Enhanced permeation of single-file water molecules across a noncylindrical nanochannel, Phys. Rev. E 88(1), 014104 (2013)
CrossRef
ADS
Google scholar
|
[41] |
Y. Wang and J. P. Huang, A water-based molecular flip-flop, Eur. Phys. J. Appl. Phys. 68(3), 30403 (2014)
CrossRef
ADS
Google scholar
|
[42] |
R. Zangi, Water confined to a slab geometry: A review of recent computer simulation studies, J. Phys.: Condens. Matter 16(45), S5371 (2004)
CrossRef
ADS
Google scholar
|
[43] |
N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phase transitions induced by nanoconfinement in liquid water, Phys. Rev. Lett. 102(5), 050603 (2009)
CrossRef
ADS
Google scholar
|
[44] |
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4(3), 435 (2008)
CrossRef
ADS
Google scholar
|
[45] |
G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipidwrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10(2), 177 (2015)
CrossRef
ADS
Google scholar
|
[46] |
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Chem. Phys. 91(24), 6269 (1987)
CrossRef
ADS
Google scholar
|
[47] |
G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(6860), 188 (2001)
CrossRef
ADS
Google scholar
|
[48] |
T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems, J. Chem. Phys. 98(12), 10089 (1993)
CrossRef
ADS
Google scholar
|
[49] |
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)
CrossRef
ADS
Google scholar
|
[50] |
W. G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A 31(3), 1695 (1985)
CrossRef
ADS
Google scholar
|
[51] |
Z. X. Guo and X. G. Gong, Molecular dynamics studies on the thermal conductivity of single-walled carbon nanotubes, Front. Phys. China 4(3), 389 (2009)
CrossRef
ADS
Google scholar
|
[52] |
I. C. Yeh and M. L. Berkowitz, Ewald summation for systems with slab geometry, J. Chem. Phys. 111(7), 3155 (1999)
CrossRef
ADS
Google scholar
|
[53] |
C. K. Lo and K. W. Yu, Field-induced structure transformation in electrorheological solids, Phys. Rev. E 64(3), 031501 (2001)
CrossRef
ADS
Google scholar
|
[54] |
J. P. Huang, J. T. K. Wan, C. K. Lo, and K. W. Yu, Nonlinear ac response of anisotropic composites, Phys. Rev. E 64(6), 061505 (2001)
CrossRef
ADS
Google scholar
|
[55] |
G. Wang and J. P. Huang, Nonlinear magnetic susceptibility of ferrofluids, Chem. Phys. Lett. 421(4−6), 544 (2006)
CrossRef
ADS
Google scholar
|
[56] |
L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Pergamon, New York, 1984
|
[57] |
C. Z. Fan and J. P. Huang, Second-harmonic generation with magnetic-field controllabilities, Appl. Phys. Lett. 89(14), 141906 (2006)
CrossRef
ADS
Google scholar
|
[58] |
J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |