Role of confinement in water solidification under electric fields

Guo-Xi Nie, Yu Wang, Ji-Ping Huang

PDF(504 KB)
PDF(504 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 106101. DOI: 10.1007/s11467-015-0504-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Role of confinement in water solidification under electric fields

Author information +
History +

Abstract

In contrast to the common belief that confinement promotes water solidification, here we show by molecular dynamics simulations that confinement can impede water solidification under electric fields. The behavior is evidenced by the increase in critical electric field strength for water solidification as the confinement progresses. We also show that the solidification occurs more easily with a parallel field than a perpendicular one. We understand and generalize these results by developing an energy theory incorporated with the anisotropic Clausius−Mossotti equation. It is revealed that the underlying mechanism lies in the confinement effect on molecules’ electro-orientations. Thus, it becomes possible to achieve electro-freezing (i.e., room-temperature ice) by choosing both confinement and electric fields appropriately.

Keywords

molecular dynamics simulations / water / electric fields / confinement

Cite this article

Download citation ▾
Guo-Xi Nie, Yu Wang, Ji-Ping Huang. Role of confinement in water solidification under electric fields. Front. Phys., 2015, 10(5): 106101 https://doi.org/10.1007/s11467-015-0504-y

References

[1]
A. Cupane, M. Fomina, I. Piazza, J. Peters, and G. Schiro, Experimental evidence for a liquid-liquid crossover in deeply cooled confined water, Phys. Rev. Lett. 113(21), 215701 (2014)
CrossRef ADS Google scholar
[2]
A. G. Marín, O. R. Enriquez, P. Brunet, P. Colinet, and J. H. Snoeijer, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett. 113(5), 054301 (2014)
CrossRef ADS Google scholar
[3]
Z. Wang, K. H. Liu, P. S. Le, M. D. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)
CrossRef ADS Google scholar
[4]
W. J. Cho, J. Kim, J. Lee, T. Keyes, J. E. Straub, and K. S. Kim, Limit of metastability for liquid and vapor phases of water, Phys. Rev. Lett. 112(15), 157802 (2014)
CrossRef ADS Google scholar
[5]
K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, Structure and dynamics of water at the pt(111) interface: Molecular dynamics study, J. Chem. Phys. 94(3), 2110 (1991)
CrossRef ADS Google scholar
[6]
P. A. Thompson, G. S. Grest, and M. O. Robbins, Phase transitions and universal dynamics in confined films, Phys. Rev. Lett. 68(23), 3448 (1992)
CrossRef ADS Google scholar
[7]
R. Zangi and A. E. Mark, Monolayer ice, Phys. Rev. Lett. 91(2), 025502 (2003)
CrossRef ADS Google scholar
[8]
R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119(3), 1694 (2003)
CrossRef ADS Google scholar
[9]
K. Koga and H. Tanaka, Phase diagram of water between hydrophobic surfaces, J. Chem. Phys. 122(10), 104711 (2005)
CrossRef ADS Google scholar
[10]
K. B. Jinesh and J. W. M. Frenken, Experimental evidence for ice formation at room temperature, Phys. Rev. Lett. 101(3), 036101 (2008)
CrossRef ADS Google scholar
[11]
I. M. Svishchev and P. G. Kusalik, Crystallization of liquid water in a molecular dynamics simulation, Phys. Rev. Lett. 73(7), 975 (1994)
CrossRef ADS Google scholar
[12]
X. Xia and M. L. Berkowitz, Electric-field induced restructuring of water at a platinum-water interface: A molecular dynamics computer simulation, Phys. Rev. Lett. 74(16), 3193 (1995)
CrossRef ADS Google scholar
[13]
X. Xia, L. Perera, U. Essmann, and M. L. Berkowitz, The structure of water at platinum/water interfaces molecular dynamics computer simulations, Surf. Sci. 335(1−3), 401 (1995)
CrossRef ADS Google scholar
[14]
I. M. Svishchev and P. G. Kusalik, Electrofreezing of liquid water: A microscopic perspective, J. Am. Chem. Soc. 118(3), 649 (1996)
CrossRef ADS Google scholar
[15]
I. Borzsák and P. T. Cummings, Electrofreezing of water in molecular dynamics simulation accelerated by oscillatory shear, Phys. Rev. E 56(6), R6279 (1997)
CrossRef ADS Google scholar
[16]
G. Sutmann, Structure formation and dynamics of water in strong external electric fields, J. Electroanal. Chem. 450(2), 289 (1998)
CrossRef ADS Google scholar
[17]
R. Zangi and A. E. Mark, Electrofreezing of confined water, J. Chem. Phys. 120(15), 7123 (2004)
CrossRef ADS Google scholar
[18]
X. Hu, N. Elghobashi-Meinhardt, D. Gembris, and J. C. Smith, Response of water to electric fields at temperatures below the glass transition: A molecular dynamics analysis, J. Chem. Phys. 135(13), 134507 (2011)
CrossRef ADS Google scholar
[19]
H. Qiu and W. L. Guo, Electromelting of confined monolayer ice, Phys. Rev. Lett. 110(19), 195701 (2013)
CrossRef ADS Google scholar
[20]
E. M. Choi, Y. H. Yoon, S. Lee, and H. Kang, Freezing transition of interfacial water at room temperature under electric fields, Phys. Rev. Lett. 95(8), 085701 (2005)
CrossRef ADS Google scholar
[21]
D. L. Scovell, T. D. Pinkerton, V. K. Medvedev, and E. M. Stuve, Phase transitions in vapordeposited water under the influence of high surface electric fields, Surf. Sci. 457(3), 365 (2000)
CrossRef ADS Google scholar
[22]
G. Chen, P. Tan, S. Chen, J. P. Huang, W. Wen, and L. Xu, Coalescence of pickering emulsion droplets induced by an electric field, Phys. Rev. Lett. 110(6), 064502 (2013)
CrossRef ADS Google scholar
[23]
P. Kim, T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, and J. Aizenberg, Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance, ACS Nano 6(8), 6569 (2012)
CrossRef ADS Google scholar
[24]
M. Lee, C. Yim, and S. Jeon, Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators, J. Chem. Phys. 142(4), 041102 (2015)
CrossRef ADS Google scholar
[25]
A. Loncaric, K. Dugalic, I. Mihaljevic, L. Jakobek, and V. Pilizota, Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple puree, J. Agric. Food Chem. 62(7), 1674 (2014)
CrossRef ADS Google scholar
[26]
T. Inada, T. Koyama, F. Goto, and T. Seto, Ice nucleation in emulsified aqueous solutions of antifreeze protein type III and poly(vinyl alcohol), J. Phys. Chem. B 115(24), 7914 (2011)
CrossRef ADS Google scholar
[27]
D. Murakami and K. Yasuoka, Molecular dynamics simulation of quasi-two-dimensional water clusters on ice nucleation protein, J. Chem. Phys. 137(5), 054303 (2012)
CrossRef ADS Google scholar
[28]
K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, and M. Havenith, Long-range protein-water dynamics in hyperactive insect antifreeze protein, Proc. Natl. Acad. Sci. USA 110(5), 1617 (2013)
CrossRef ADS Google scholar
[29]
P. A. Thompson and M. O. Robbins, Origin of stick-slip motion in boundary lubrication, Science 250(4982), 792 (1990)
CrossRef ADS Google scholar
[30]
M. O. Robbins and P. A. Thompson, Critical velocity of stick-slip motion, Science 253(5022), 916 (1991)
CrossRef ADS Google scholar
[31]
J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola, Dynamic properties of molecularly thin liquid films, Science 240(4849), 189 (1988)
CrossRef ADS Google scholar
[32]
S. Granick, Motions and relaxations of confined liquids, Science 253(5026), 1374 (1991)
CrossRef ADS Google scholar
[33]
J. Klein and E. Kumacheva, Confinement-induced phase transitions in simple liquids, Science 269(5225), 816 (1995)
CrossRef ADS Google scholar
[34]
Z. Y. Qian and G. H. Wei, Electric-field-induced phase transition of confined water nanofilms between two graphene sheets, J. Phys. Chem. A 118(39), 8922 (2014)
CrossRef ADS Google scholar
[35]
X. Y. Zhu, Q. Z. Yuan, and Y. P. Zhao, Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing, Nanoscale 6(10), 5432 (2014)
CrossRef ADS Google scholar
[36]
F. Mei, X. Y. Zhou, J. L. Kou, F. M. Wu, C. L.Wang, and H. J. Lu, A transition between bistable ice when coupling electric field and nanoconfinement, J. Chem. Phys. 142(13), 134704 (2015)
CrossRef ADS Google scholar
[37]
Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Water-mediated signal multiplication with Y-shaped carbon nanotubes, Proc. Natl. Acad. Sci. USA 106(43), 18120 (2009)
CrossRef ADS Google scholar
[38]
Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115(45), 13275 (2011)
CrossRef ADS Google scholar
[39]
J. Y. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
CrossRef ADS Google scholar
[40]
X. W. Meng and J. P. Huang, Enhanced permeation of single-file water molecules across a noncylindrical nanochannel, Phys. Rev. E 88(1), 014104 (2013)
CrossRef ADS Google scholar
[41]
Y. Wang and J. P. Huang, A water-based molecular flip-flop, Eur. Phys. J. Appl. Phys. 68(3), 30403 (2014)
CrossRef ADS Google scholar
[42]
R. Zangi, Water confined to a slab geometry: A review of recent computer simulation studies, J. Phys.: Condens. Matter 16(45), S5371 (2004)
CrossRef ADS Google scholar
[43]
N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phase transitions induced by nanoconfinement in liquid water, Phys. Rev. Lett. 102(5), 050603 (2009)
CrossRef ADS Google scholar
[44]
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4(3), 435 (2008)
CrossRef ADS Google scholar
[45]
G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipidwrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10(2), 177 (2015)
CrossRef ADS Google scholar
[46]
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Chem. Phys. 91(24), 6269 (1987)
CrossRef ADS Google scholar
[47]
G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(6860), 188 (2001)
CrossRef ADS Google scholar
[48]
T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems, J. Chem. Phys. 98(12), 10089 (1993)
CrossRef ADS Google scholar
[49]
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)
CrossRef ADS Google scholar
[50]
W. G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A 31(3), 1695 (1985)
CrossRef ADS Google scholar
[51]
Z. X. Guo and X. G. Gong, Molecular dynamics studies on the thermal conductivity of single-walled carbon nanotubes, Front. Phys. China 4(3), 389 (2009)
CrossRef ADS Google scholar
[52]
I. C. Yeh and M. L. Berkowitz, Ewald summation for systems with slab geometry, J. Chem. Phys. 111(7), 3155 (1999)
CrossRef ADS Google scholar
[53]
C. K. Lo and K. W. Yu, Field-induced structure transformation in electrorheological solids, Phys. Rev. E 64(3), 031501 (2001)
CrossRef ADS Google scholar
[54]
J. P. Huang, J. T. K. Wan, C. K. Lo, and K. W. Yu, Nonlinear ac response of anisotropic composites, Phys. Rev. E 64(6), 061505 (2001)
CrossRef ADS Google scholar
[55]
G. Wang and J. P. Huang, Nonlinear magnetic susceptibility of ferrofluids, Chem. Phys. Lett. 421(4−6), 544 (2006)
CrossRef ADS Google scholar
[56]
L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Pergamon, New York, 1984
[57]
C. Z. Fan and J. P. Huang, Second-harmonic generation with magnetic-field controllabilities, Appl. Phys. Lett. 89(14), 141906 (2006)
CrossRef ADS Google scholar
[58]
J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(504 KB)

Accesses

Citations

Detail

Sections
Recommended

/