Superconductivity and superfluidity as universal emergent phenomena

Mike Guidry , Yang Sun

Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107404

PDF (406KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107404 DOI: 10.1007/s11467-015-0502-0
RESEARCH ARTICLE

Superconductivity and superfluidity as universal emergent phenomena

Author information +
History +
PDF (406KB)

Abstract

Superconductivity (SC) or superfluidity (SF) is observed across a remarkably broad range of fermionic systems: in BCS, cuprate, iron-based, organic, and heavy-fermion superconductors, and in superfluid helium-3 in condensed matter; in a variety of SC/SF phenomena in low-energy nuclear physics; in ultracold, trapped atomic gases; and in various exotic possibilities in neutron stars. The range of physical conditions and differences in microscopic physics defy all attempts to unify this behavior in any conventional picture. Here we propose a unification through the shared symmetry properties of the emergent condensed states, with microscopic differences absorbed into parameters. This, in turn, forces a rethinking of specific occurrences of SC/SF such as high-Tc SC in cuprates, which becomes far less mysterious when seen as part of a continuum of behavior shared by a variety of other systems.

Graphical abstract

Keywords

superconductivity / superfluidity

Cite this article

Download citation ▾
Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena. Front. Phys., 2015, 10(4): 107404 DOI:10.1007/s11467-015-0502-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104(4), 1189 (1956)

[2]

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)

[3]

A. Bohr, B. R. Mottelson, and D. Pines, Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state, Phys. Rev. 110(4), 936 (1958)

[4]

P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)

[5]

D. D. Osheroff, R. C. Richardson, and D. M. Lee, Evidence for a new phase of solid He3, Phys. Rev. Lett. 28(14), 885 (1972)

[6]

J. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)

[7]

J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189 (1986)

[8]

D. Jérome, Organic superconductors: When correlations and magnetism walk in, arXiv: 1201.5796 (2012)

[9]

Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)

[10]

D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner, Stellar superfluids, arXiv: 1302.6626 (2013)

[11]

M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435(7045), 1047 (2005)

[12]

Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)

[13]

W. Yi, W. Zhang, and X. L. Cui, Pairing superfluidity in spin-orbit coupled ultracold Fermi gases, Sci. China-Phys. Mech. Astron. 58(1), 014201 (2015)

[14]

M. R. Norman, Unconventional superconductivity, arXiv: 1302.3176 (2013)

[15]

L. Fang, H. Q. Luo, P. Cheng, Z. S. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H.-H. Wen, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1−xCox)2As2, Phys. Rev. B 80, 140508(R) (2009)

[16]

G. Knebel, D. Aoki, and J. Flouquet, Magnetism and superconductivity in CeRhIn5, arXiv: 0911.5223 (2009)

[17]

N. Kang, B. Salameh, P. Auban-Senzier, D. Jérome, C. R. Pasquier, and S. Brazovskii, Domain walls at the spin-density-wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure, Phys. Rev. B 81, 100509(R), (2010)

[18]

J. Tao, S. Li, X. Y. Zhu, H. Yang, and H. H. Wen, Growth and transport properties of CaFeAsF1−x single crystals, Sci. China-Phys. Mech. Astron. 57(4), 632 (2014)

[19]

M. W. Guidry, Y. Sun, and C. L. Wu, Mott insulators, no double occupancy, and non-Abelian superconductivity, Phys. Rev. B 70(18), 184501 (2004)

[20]

C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)

[21]

C. L. Wu, D. H. Feng, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetries and the nuclear shell model, Phys. Lett. B 168(4), 313 (1986)

[22]

M. W. Guidry, L. A. Wu, Y. Sun, and C. L. Wu, SU(4) model of high-temperature superconductivity and antiferromagnetism, Phys. Rev. B 63(13), 134516 (2001)

[23]

Y. Sun, M. W. Guidry, and C. L. Wu, Pairing gaps, pseudogaps, and phase diagrams for cuprate superconductors, Phys. Rev. B 75(13), 134511 (2007)

[24]

M. W. Guidry, Y. Sun, and C. L. Wu, A unified description of cuprate and iron arsenide superconductors, Front. Phys. China 4(4), 433 (2009)

[25]

M. Guidry, Y. Sun, and C.-L. Wu, Generalizing the Cooper pair instability to doped Mott insulators, Front. Phys. China 5(2), 171 (2010)

[26]

M. W. Guidry, Y. Sun, and C. L. Wu, Inhomogeneity, dynamical symmetry, and complexity in high-temperature superconductors: Reconciling a universal phase diagram with rich local disorder, Chin. Sci. Bull. 56(4−5), 367 (2011)

[27]

F. Iachello and A. Arima, The Interacting Boson Model, Cambridge: Cambridge University Press, 1987

[28]

R. Bijker, F. Iachello, and A. Leviatan, Algebraic models of hadron structure (I): Nonstrange baryons, Ann. Phys. 236(1), 69 (1994)

[29]

F. Iachello and R. D. Levine, Algebraic Theory of Molecules, Oxford: Oxford University Press, 1995

[30]

W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical interpretation of SO(7): A critical dynamical symmetry, Phys. Rev. Lett. 59(18), 2032 (1987)

[31]

P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doğan, The magnetic excitation spectrum and thermodynamics of high-Tc superconductors, Science 284(5418), 1344 (1999)

[32]

J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Electronic spectra and their relation to the (π, π) collective mode in high-Tc superconductors, Phys. Rev. Lett. 83(18), 3709 (1999)

[33]

S. Raman, C. H. Malarkey, W. T. Milner, P. H. Jr Nestor, and P. H. Stelson, Transition probability, B(E2)↑ from the ground to the first-excited 2+ state of even-even nuclides, At. Data Nucl. Data Tables 36, 1 (1987)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (406KB)

1396

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/