Superconductivity and superfluidity as universal emergent phenomena
Mike Guidry, Yang Sun
Superconductivity and superfluidity as universal emergent phenomena
Superconductivity (SC) or superfluidity (SF) is observed across a remarkably broad range of fermionic systems: in BCS, cuprate, iron-based, organic, and heavy-fermion superconductors, and in superfluid helium-3 in condensed matter; in a variety of SC/SF phenomena in low-energy nuclear physics; in ultracold, trapped atomic gases; and in various exotic possibilities in neutron stars. The range of physical conditions and differences in microscopic physics defy all attempts to unify this behavior in any conventional picture. Here we propose a unification through the shared symmetry properties of the emergent condensed states, with microscopic differences absorbed into parameters. This, in turn, forces a rethinking of specific occurrences of SC/SF such as high-Tc SC in cuprates, which becomes far less mysterious when seen as part of a continuum of behavior shared by a variety of other systems.
superconductivity / superfluidity
[1] |
L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104(4), 1189 (1956)
CrossRef
ADS
Google scholar
|
[2] |
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)
CrossRef
ADS
Google scholar
|
[3] |
A. Bohr, B. R. Mottelson, and D. Pines, Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state, Phys. Rev. 110(4), 936 (1958)
CrossRef
ADS
Google scholar
|
[4] |
P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)
CrossRef
ADS
Google scholar
|
[5] |
D. D. Osheroff, R. C. Richardson, and D. M. Lee, Evidence for a new phase of solid He3, Phys. Rev. Lett. 28(14), 885 (1972)
CrossRef
ADS
Google scholar
|
[6] |
J. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)
CrossRef
ADS
Google scholar
|
[7] |
J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189 (1986)
CrossRef
ADS
Google scholar
|
[8] |
D. Jérome, Organic superconductors: When correlations and magnetism walk in, arXiv: 1201.5796 (2012)
|
[9] |
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef
ADS
Google scholar
|
[10] |
D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner, Stellar superfluids, arXiv: 1302.6626 (2013)
|
[11] |
M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435(7045), 1047 (2005)
CrossRef
ADS
Google scholar
|
[12] |
Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
CrossRef
ADS
Google scholar
|
[13] |
W. Yi, W. Zhang, and X. L. Cui, Pairing superfluidity in spin-orbit coupled ultracold Fermi gases, Sci. China-Phys. Mech. Astron. 58(1), 014201 (2015)
CrossRef
ADS
Google scholar
|
[14] |
M. R. Norman, Unconventional superconductivity, arXiv: 1302.3176 (2013)
|
[15] |
L. Fang, H. Q. Luo, P. Cheng, Z. S. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H.-H. Wen, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1-xCox)2As2, Phys. Rev. B 80, 140508(R) (2009)
|
[16] |
G. Knebel, D. Aoki, and J. Flouquet, Magnetism and superconductivity in CeRhIn5, arXiv: 0911.5223 (2009)
|
[17] |
N. Kang, B. Salameh, P. Auban-Senzier, D. Jérome, C. R. Pasquier, and S. Brazovskii, Domain walls at the spin-density-wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure, Phys. Rev. B 81, 100509(R), (2010)
|
[18] |
J. Tao, S. Li, X. Y. Zhu, H. Yang, and H. H. Wen, Growth and transport properties of CaFeAsF1-x single crystals, Sci. China-Phys. Mech. Astron. 57(4), 632 (2014)
CrossRef
ADS
Google scholar
|
[19] |
M. W. Guidry, Y. Sun, and C. L. Wu, Mott insulators, no double occupancy, and non-Abelian superconductivity, Phys. Rev. B 70(18), 184501 (2004)
CrossRef
ADS
Google scholar
|
[20] |
C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)
CrossRef
ADS
Google scholar
|
[21] |
C. L. Wu, D. H. Feng, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetries and the nuclear shell model, Phys. Lett. B 168(4), 313 (1986)
CrossRef
ADS
Google scholar
|
[22] |
M. W. Guidry, L. A. Wu, Y. Sun, and C. L. Wu, SU(4) model of high-temperature superconductivity and antiferromagnetism, Phys. Rev. B 63(13), 134516 (2001)
CrossRef
ADS
Google scholar
|
[23] |
Y. Sun, M. W. Guidry, and C. L. Wu, Pairing gaps, pseudogaps, and phase diagrams for cuprate superconductors, Phys. Rev. B 75(13), 134511 (2007)
CrossRef
ADS
Google scholar
|
[24] |
M. W. Guidry, Y. Sun, and C. L. Wu, A unified description of cuprate and iron arsenide superconductors, Front. Phys. China 4(4), 433 (2009)
CrossRef
ADS
Google scholar
|
[25] |
M. Guidry, Y. Sun, and C.-L. Wu, Generalizing the Cooper pair instability to doped Mott insulators, Front. Phys. China 5(2), 171 (2010)
CrossRef
ADS
Google scholar
|
[26] |
M. W. Guidry, Y. Sun, and C. L. Wu, Inhomogeneity, dynamical symmetry, and complexity in high-temperature superconductors: Reconciling a universal phase diagram with rich local disorder, Chin. Sci. Bull. 56(4-5), 367 (2011)
CrossRef
ADS
Google scholar
|
[27] |
F. Iachello and A. Arima, The Interacting Boson Model, Cambridge: Cambridge University Press, 1987
CrossRef
ADS
Google scholar
|
[28] |
R. Bijker, F. Iachello, and A. Leviatan, Algebraic models of hadron structure (I): Nonstrange baryons, Ann. Phys. 236(1), 69 (1994)
CrossRef
ADS
Google scholar
|
[29] |
F. Iachello and R. D. Levine, Algebraic Theory of Molecules, Oxford: Oxford University Press, 1995
|
[30] |
W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical interpretation of SO(7): A critical dynamical symmetry, Phys. Rev. Lett. 59(18), 2032 (1987)
CrossRef
ADS
Google scholar
|
[31] |
P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doğan, The magnetic excitation spectrum and thermodynamics of high-Tc superconductors, Science 284(5418), 1344 (1999)
CrossRef
ADS
Google scholar
|
[32] |
J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Electronic spectra and their relation to the (π, π) collective mode in high-Tc superconductors, Phys. Rev. Lett. 83(18), 3709 (1999)
CrossRef
ADS
Google scholar
|
[33] |
S. Raman, C. H. Malarkey, W. T. Milner, P. H. Jr Nestor, and P. H. Stelson, Transition probability, B(E2)↑, from the ground to the first-excited 2+ state of even-even nuclides, At. Data Nucl. Data Tables 36, 1 (1987)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |