Superconductivity and superfluidity as universal emergent phenomena

Mike Guidry, Yang Sun

PDF(406 KB)
PDF(406 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107404. DOI: 10.1007/s11467-015-0502-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Superconductivity and superfluidity as universal emergent phenomena

Author information +
History +

Abstract

Superconductivity (SC) or superfluidity (SF) is observed across a remarkably broad range of fermionic systems: in BCS, cuprate, iron-based, organic, and heavy-fermion superconductors, and in superfluid helium-3 in condensed matter; in a variety of SC/SF phenomena in low-energy nuclear physics; in ultracold, trapped atomic gases; and in various exotic possibilities in neutron stars. The range of physical conditions and differences in microscopic physics defy all attempts to unify this behavior in any conventional picture. Here we propose a unification through the shared symmetry properties of the emergent condensed states, with microscopic differences absorbed into parameters. This, in turn, forces a rethinking of specific occurrences of SC/SF such as high-Tc SC in cuprates, which becomes far less mysterious when seen as part of a continuum of behavior shared by a variety of other systems.

Graphical abstract

Keywords

superconductivity / superfluidity

Cite this article

Download citation ▾
Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena. Front. Phys., 2015, 10(4): 107404 https://doi.org/10.1007/s11467-015-0502-0

References

[1]
L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104(4), 1189 (1956)
CrossRef ADS Google scholar
[2]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)
CrossRef ADS Google scholar
[3]
A. Bohr, B. R. Mottelson, and D. Pines, Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state, Phys. Rev. 110(4), 936 (1958)
CrossRef ADS Google scholar
[4]
P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)
CrossRef ADS Google scholar
[5]
D. D. Osheroff, R. C. Richardson, and D. M. Lee, Evidence for a new phase of solid He3, Phys. Rev. Lett. 28(14), 885 (1972)
CrossRef ADS Google scholar
[6]
J. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)
CrossRef ADS Google scholar
[7]
J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189 (1986)
CrossRef ADS Google scholar
[8]
D. Jérome, Organic superconductors: When correlations and magnetism walk in, arXiv: 1201.5796 (2012)
[9]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef ADS Google scholar
[10]
D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner, Stellar superfluids, arXiv: 1302.6626 (2013)
[11]
M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435(7045), 1047 (2005)
CrossRef ADS Google scholar
[12]
Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
CrossRef ADS Google scholar
[13]
W. Yi, W. Zhang, and X. L. Cui, Pairing superfluidity in spin-orbit coupled ultracold Fermi gases, Sci. China-Phys. Mech. Astron. 58(1), 014201 (2015)
CrossRef ADS Google scholar
[14]
M. R. Norman, Unconventional superconductivity, arXiv: 1302.3176 (2013)
[15]
L. Fang, H. Q. Luo, P. Cheng, Z. S. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H.-H. Wen, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1-xCox)2As2, Phys. Rev. B 80, 140508(R) (2009)
[16]
G. Knebel, D. Aoki, and J. Flouquet, Magnetism and superconductivity in CeRhIn5, arXiv: 0911.5223 (2009)
[17]
N. Kang, B. Salameh, P. Auban-Senzier, D. Jérome, C. R. Pasquier, and S. Brazovskii, Domain walls at the spin-density-wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure, Phys. Rev. B 81, 100509(R), (2010)
[18]
J. Tao, S. Li, X. Y. Zhu, H. Yang, and H. H. Wen, Growth and transport properties of CaFeAsF1-x single crystals, Sci. China-Phys. Mech. Astron. 57(4), 632 (2014)
CrossRef ADS Google scholar
[19]
M. W. Guidry, Y. Sun, and C. L. Wu, Mott insulators, no double occupancy, and non-Abelian superconductivity, Phys. Rev. B 70(18), 184501 (2004)
CrossRef ADS Google scholar
[20]
C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)
CrossRef ADS Google scholar
[21]
C. L. Wu, D. H. Feng, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetries and the nuclear shell model, Phys. Lett. B 168(4), 313 (1986)
CrossRef ADS Google scholar
[22]
M. W. Guidry, L. A. Wu, Y. Sun, and C. L. Wu, SU(4) model of high-temperature superconductivity and antiferromagnetism, Phys. Rev. B 63(13), 134516 (2001)
CrossRef ADS Google scholar
[23]
Y. Sun, M. W. Guidry, and C. L. Wu, Pairing gaps, pseudogaps, and phase diagrams for cuprate superconductors, Phys. Rev. B 75(13), 134511 (2007)
CrossRef ADS Google scholar
[24]
M. W. Guidry, Y. Sun, and C. L. Wu, A unified description of cuprate and iron arsenide superconductors, Front. Phys. China 4(4), 433 (2009)
CrossRef ADS Google scholar
[25]
M. Guidry, Y. Sun, and C.-L. Wu, Generalizing the Cooper pair instability to doped Mott insulators, Front. Phys. China 5(2), 171 (2010)
CrossRef ADS Google scholar
[26]
M. W. Guidry, Y. Sun, and C. L. Wu, Inhomogeneity, dynamical symmetry, and complexity in high-temperature superconductors: Reconciling a universal phase diagram with rich local disorder, Chin. Sci. Bull. 56(4-5), 367 (2011)
CrossRef ADS Google scholar
[27]
F. Iachello and A. Arima, The Interacting Boson Model, Cambridge: Cambridge University Press, 1987
CrossRef ADS Google scholar
[28]
R. Bijker, F. Iachello, and A. Leviatan, Algebraic models of hadron structure (I): Nonstrange baryons, Ann. Phys. 236(1), 69 (1994)
CrossRef ADS Google scholar
[29]
F. Iachello and R. D. Levine, Algebraic Theory of Molecules, Oxford: Oxford University Press, 1995
[30]
W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical interpretation of SO(7): A critical dynamical symmetry, Phys. Rev. Lett. 59(18), 2032 (1987)
CrossRef ADS Google scholar
[31]
P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doğan, The magnetic excitation spectrum and thermodynamics of high-Tc superconductors, Science 284(5418), 1344 (1999)
CrossRef ADS Google scholar
[32]
J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Electronic spectra and their relation to the (π, π) collective mode in high-Tc superconductors, Phys. Rev. Lett. 83(18), 3709 (1999)
CrossRef ADS Google scholar
[33]
S. Raman, C. H. Malarkey, W. T. Milner, P. H. Jr Nestor, and P. H. Stelson, Transition probability, B(E2)↑, from the ground to the first-excited 2+ state of even-even nuclides, At. Data Nucl. Data Tables 36, 1 (1987)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(406 KB)

Accesses

Citations

Detail

Sections
Recommended

/