Quadrupolar matter-wave soliton in two-dimensional free space

Jia-Sheng Huang, Xun-Da Jiang, Huai-Yu Chen, Zhi-Wei Fan, Wei Pang, Yong-Yao Li

PDF(353 KB)
PDF(353 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 100507. DOI: 10.1007/s11467-015-0501-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Quadrupolar matter-wave soliton in two-dimensional free space

Author information +
History +

Abstract

We study two-dimensional (2D) matter-wave solitons in the mean-field models formed by electric quadrupole particles with long-range quadrupole–quadrupole interaction (QQI) in 2D free space. The existence of 2D matter-wave solitons in the free space was predicted using the 2D Gross–Pitaevskii Equation (GPE). We find that the QQI solitons have a higher mass (smaller size and higher intensity) and stronger anisotropy than the dipole–dipole interaction (DDI) solitons under the same environmental parameters. Anisotropic soliton–soliton interaction between two identical QQI solitons in 2D free space is studied. Moreover, stable anisotropic dipole solitons are observed, to our knowledge, for the first time in 2D free space under anisotropic nonlocal cubic nonlinearity.

Graphical abstract

Keywords

2D matter-wave solitons / quadrupole - quadrupole interaction / anisotropy soliton - soliton interaction / dipole solitons

Cite this article

Download citation ▾
Jia-Sheng Huang, Xun-Da Jiang, Huai-Yu Chen, Zhi-Wei Fan, Wei Pang, Yong-Yao Li. Quadrupolar matter-wave soliton in two-dimensional free space. Front. Phys., 2015, 10(4): 100507 https://doi.org/10.1007/s11467-015-0501-1

References

[1]
L. P. Pitaevskii and S. Sandro, Bose–Einstein Condensation, No. 116, Oxford University Press, 2003
[2]
S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and K. Sengstock, Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999)
CrossRef ADS Google scholar
[3]
S. Song, L. Wen, C. Liu, S. Gou, and W. Liu, Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates, Front. Phys. 8(3), 302 (2013)
CrossRef ADS Google scholar
[4]
B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell, Watching dark solitons decay into vortex rings in a Bose–Einstein condensate, Phys. Rev. Lett. 86(14), 2926 (2001)
CrossRef ADS Google scholar
[5]
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science 292(5516), 476 (2001)
CrossRef ADS Google scholar
[6]
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junction arrays with Bose-Einstein condensates, Science 293(5531), 843 (2001)
CrossRef ADS Google scholar
[7]
C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates, Phys. Rev. A 64(5), 053604 (2001)
CrossRef ADS Google scholar
[8]
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
CrossRef ADS Google scholar
[9]
C. Lee, Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose–Einstein condensate, Phys. Rev. Lett. 102(7), 070401 (2009)
CrossRef ADS Google scholar
[10]
H. Zheng and Q. Gu, Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential, Front. Phys. 8(4), 375 (2013)
CrossRef ADS Google scholar
[11]
Y. Li, J. Liu, W. Pang, and B. A. Malomed, Symmetry breaking in dipolar matter-wave solitons in dual-core couplers, Phys. Rev. A 87(1), 013604 (2013)
CrossRef ADS Google scholar
[12]
Y. Li, W. Pang, and B. A. Malomed, Nonlinear modes and symmetry breaking in rotating double-well potentials, Phys. Rev. A 86(2), 023832 (2012)
CrossRef ADS Google scholar
[13]
J. Denschlag, Generating solitons by phase engineering of a Bose–Einstein condensate, Science 287, 97 (2000)
CrossRef ADS Google scholar
[14]
Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Formation of a matter-wave bright soliton, Science 296, 1290 (2002)
CrossRef ADS Google scholar
[15]
Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, Observation of a Feshbach resonance in cold atom scattering, Phys. Rev. Lett. 81, 69 (1998)
CrossRef ADS Google scholar
[16]
M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and J. Hecker Denschlag, Tuning the scattering length with an optically induced Feshbach resonance, Phys. Rev. Lett. 93(1), 123001 (2004)
CrossRef ADS Google scholar
[17]
X. Zhang, X. Hu, D. Wang, X. Liu, and W. Liu, Dynamics of Bose-Einstein condensates near Feshbach resonance in external potential, Front. Phys. China 6(1), 46 (2011)
CrossRef ADS Google scholar
[18]
S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn and W. Ketterle, Observation of Feshbach resonances in a Bose–Einstein condensate, Nature 293(6672), 151 (1998)
[19]
P. Courteille, R. S. Freeland, D. J. He inzen, F. A. van Abeelen and B. J. Verhaar, Observation of Feshbach resonances in cold atom scattering, Phys. Rev. Lett. 81, 69 (1998)
CrossRef ADS Google scholar
[20]
J. Huang, H. Li, X. Zhang, and Y. Li, Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects, Front. Phys. 10(2), 104201 (2015)
CrossRef ADS Google scholar
[21]
Z. Chen, J. Huang, J. Chai, X. Zhang, Y. Li, and B. A. Malomed, Discrete solitons in self-defocusing systems with PT-symmetric defects, Phys. Rev. A 91(5), 053821 (2015)
CrossRef ADS Google scholar
[22]
M. Saha, A. K. Sarma, Modulation instability in nonlinear metamaterials induced by cubic–quintic nonlinearities and higher order dispersive effects, Opt. Commun. 291, 321 (2013)
CrossRef ADS Google scholar
[23]
J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422(6928), 147 (2003)
CrossRef ADS Google scholar
[24]
G. Chen, Z. Hong, and Z. Mai, Two-dimensional discrete Anderson location in waveguide matrix, J. Nonlinear Optic. Phys. Mat. 23(03), 1450033 (2014)
CrossRef ADS Google scholar
[25]
X. Zhang, J. Chai, D. Ou, and Y. Li, Antisymmetry breaking of discrete dipole gap solitons induced by a phase-slip defect, Mod. Phys. Lett. B 28(12), 1450097 (2014)
CrossRef ADS Google scholar
[26]
N. K. Efremidis and D. N. Christodoulides, Lattice solitons in Bose–Einstein condensates, Phys. Rev. A 67(6), 063608 (2003).
CrossRef ADS Google scholar
[27]
N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen, and M. Segev, Two-dimensional optical lattice solitons, Phys. Rev. Lett. 91(21), 213906 (2003)
CrossRef ADS Google scholar
[28]
W. Pang, J. Wu, Z. Yuan, Y. Liu, and G. Chen, Lattice solitons in optical lattice controlled by electromagnetically induced transparency, J. Phys. Soc. Jpn. 80(11), 113401 (2011)
CrossRef ADS Google scholar
[29]
J. T. Cole and Z. H. Musslimani, Band gaps and lattice solitons for the higher-order nonlinear Schrödinger equation with a periodic potential, Phys. Rev. A 90(1), 013815 (2014)
CrossRef ADS Google scholar
[30]
X. Gan, P. Zhang, S. Liu, F. Xiao, and J. Zhao, Beam steering and topological transformations driven by interactions between a discrete vortex soliton and a discrete fundamental soliton, Phys. Rev. A 89(1), 013844 (2014)
CrossRef ADS Google scholar
[31]
G. Chen, H. Huang, and M. Wu, Solitary vortices in twodimensional waveguide matrix, J. Nonlinear Optic. Phys. Mat. 24(01), 1550012 (2015)
CrossRef ADS Google scholar
[32]
G. Chen, H. Huang, and M. Wu, Discrete vortices on anisotropic lattices, Front. Phys. 10, 104206 (2015)
CrossRef ADS Google scholar
[33]
R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Low, and T. Pfau, Rydberg excitation of Bose–Einstein condensates, Phys. Rev. Lett. 100(3), 033601 (2008)
CrossRef ADS Google scholar
[34]
M. Viteau, M. G. Bason, J. Radogostowicz, N. Malossi, D. Ciampini, O. Morsch, and E. Arimondo, Rydberg excitations in Bose–Einstein condensates in quasi-one-dimensional potentials and optical lattices, Phys. Rev. Lett. 107(6), 060402 (2011)
CrossRef ADS Google scholar
[35]
S. Giovanazzi, A. Gorlitz, and T. Pfau, Tuning the dipolar interaction in quantum gases, Phys. Rev. Lett. 89(13), 130401 (2002)
CrossRef ADS Google scholar
[36]
P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)
CrossRef ADS Google scholar
[37]
T. Koch, T. Lahaye, J. Metz, B. Frohlich, A. Griesmaier, and T. Pfau, Stabilization of a purely dipolar quantum gas against collapse, Nat. Phys. 4(3), 218 (2008)
CrossRef ADS Google scholar
[38]
I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)
CrossRef ADS Google scholar
[39]
Y. Li, J. Liu, W. Pang, and B. A. Malomed, Matter-wave solitons supported by field-induced dipole–dipole repulsion with spatially modulated strength, Phys. Rev. A 88(5), 053630 (2013).
CrossRef ADS Google scholar
[40]
Z. Luo, Y. Li, W. Pang, and Y. Liu, Dipolar matter-wave soliton in one-dimensional optical lattice with tunable local and nonlocal nonlinearities, J. Phys. Soc. Jpn. 82(9), 094401 (2013)
CrossRef ADS Google scholar
[41]
S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos, and R. G. Hulet, Extreme tunability of interactions in a Li7 Bose–Einstein condensate, Phys. Rev. Lett. 102(9), 090402 (2009)
CrossRef ADS Google scholar
[42]
L. P. Pitaevskii and A. Stringari, Bose–Einstein condensation, Clarendon Press, Oxford, 2003
[43]
Y. Li, J. Liu, W. Pang, and B. A. Malomed, Lattice solitons with quadrupolar intersite interactions, Phys. Rev. A 88(6), 063635 (2013)
CrossRef ADS Google scholar
[44]
L. D. Landau and E. M. Lifshitz, The Field Theory, Nauka-Publishers, Moscow, 1988
[45]
H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)
CrossRef ADS Google scholar
[46]
X. Zhang, J. Chai, J. Huang, Z. Chen, Y. Li, and B. A. Malomed, Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT -symmetric defect, Opt. Exp. 22(11), 13927 (2014)
CrossRef ADS Google scholar
[47]
M. L. Chiofalo, S. Succi, and M. P. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E 62(5), 7438 (2000)
CrossRef ADS Google scholar
[48]
J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud. Appl. Math. 120(3), 265 (2008)
CrossRef ADS Google scholar
[49]
J. Yang and T. I. Lakoba, Universally-convergent squaredoperator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math. 118(2), 153 (2007)
CrossRef ADS Google scholar
[50]
G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007
[51]
Z. Chen, J. Liu, S. Fu, Y. Li, and B. A. Malomed, Discrete solitons and vortices on two-dimensional lattices of PT -symmetric couplers, Opt. Exp. 22(24), 029679 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(353 KB)

Accesses

Citations

Detail

Sections
Recommended

/