Quantum phase transitions in two-dimensional strongly correlated fermion systems

Bao An(保安), Chen Yao-Hua(陈耀华), Lin Heng-Fu(林恒福), Liu Hai-Di(刘海迪), Zhang Xiao-Zhong(章晓中)

PDF(1684 KB)
PDF(1684 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 106401. DOI: 10.1007/s11467-015-0498-5
REVIEW ARTICLE
REVIEW ARTICLE

Quantum phase transitions in two-dimensional strongly correlated fermion systems

Author information +
History +

Abstract

In this article, we review our recent work on quantum phase transition in two-dimensional strongly correlated fermion systems. We discuss the metal−insulator transition properties of these systems by calculating the density of states, double occupancy, and Fermi surface evolution using a combination of the cellular dynamical mean-field theory (CDMFT) and the continuous-time quantum Monte Carlo algorithm. Furthermore, we explore the magnetic properties of each state by defining magnetic order parameters. Rich phase diagrams with many intriguing quantum states, including antiferromagnetic metal, paramagnetic metal, Kondo metal, and ferromagnetic insulator, were found for the two-dimensional lattices with strongly correlated fermions. We believe that our results would lead to a better understanding of the properties of real materials.

Keywords

quantum phase transition / two-dimensional lattices / fermions / cellular dynamical mean-field theory / continuous-time quantum Monte Carlo

Cite this article

Download citation ▾
Bao An(保安), Chen Yao-Hua(陈耀华), Lin Heng-Fu(林恒福), Liu Hai-Di(刘海迪), Zhang Xiao-Zhong(章晓中). Quantum phase transitions in two-dimensional strongly correlated fermion systems. Front. Phys., 2015, 10(5): 106401 https://doi.org/10.1007/s11467-015-0498-5

References

[1]
T. Pruschke, M. Jarrell, and J. Freericks, Anomalous normal-state properties of high-Tc superconductors: Intrinsic properties of strongly correlated electron systems, Adv. Phys. 44(2), 187 (1995)
CrossRef ADS Google scholar
[2]
P. Fendley and K. Schoutens, Exact results for strongly correlated fermions in 2+1 dimensions, Phys. Rev. Lett. 95(4), 046403 (2005)
CrossRef ADS Google scholar
[3]
W. Krauth, M. Caffarel, and J. P. Bouchaud, Gutzwiller wave function for a model of strongly interacting bosons, Phys. Rev. B 45(6), 3137 (1992)
CrossRef ADS Google scholar
[4]
M. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Krishnamurthy, Nonlocal dynamical correlations of strongly interacting electron systems, Phys. Rev. B 58(12), R7475 (1998)
CrossRef ADS Google scholar
[5]
K. M. O’Hara, , Observation of a strongly interacting degenerate Fermi gas of atoms, Science 298, 2179 (2002)
CrossRef ADS Google scholar
[6]
E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M. Gustavsson, M. Dalmonte, G. Pupillo, and H. C. Nägerl, Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons, Nature 466(7306), 597 (2010)
CrossRef ADS Google scholar
[7]
M. Capone, , Strongly correlated superconductivity, Science 296, 2364 (2002)
CrossRef ADS Google scholar
[8]
A. Georges, G. Kotliar, and Q. Si, Strongly correlated systems in infinite dimensions and their zero dimensional counterparts, Int. J. Mod. Phys. B 06(05n06), 705 (1992)
[9]
A. Ramirez, Strongly geometrically frustrated magnets, Annu. Rev. Mater. Sci. 24(1), 453 (1994)
CrossRef ADS Google scholar
[10]
Y. Yang and C. Thompson, Thermodynamics of the strongly correlated Hubbard model, J. Phys. Math. Gen. 24(6), L279 (1991)
CrossRef ADS Google scholar
[11]
J. H. Wu, R. Qi, A. C. Ji, and W. M. Liu, Quantum tunneling of ultracold atoms in optical traps, Front. Phys. 9(2), 137 (2014)
CrossRef ADS Google scholar
[12]
S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose−Einstein condensates, Front. Phys. 8(3), 302 (2013)
CrossRef ADS Google scholar
[13]
A. Lüscher and A. M. Läuchli, Exact diagonalization study of the antiferromagnetic spin-1/2 Heisenberg model on the square lattice in a magnetic field, Phys. Rev. B 79(19), 195102 (2009)
CrossRef ADS Google scholar
[14]
D. Betts, H. Lin, and J. Flynn, Improved finite-lattice estimates of the properties of two quantum spin models on the infinite square lattice, Can. J. Phys. 77(5), 353 (1999)
CrossRef ADS Google scholar
[15]
C. C. Chang and R. T. Scalettar, Quantum disordered phase near the Mott transition in the staggered-flux Hubbard model on a square lattice, Phys. Rev. Lett. 109(2), 026404 (2012)
CrossRef ADS Google scholar
[16]
Y. H. Chen, J. Li, and C. S. Ting, Topological phase transitions with non-Abelian gauge potentials on square lattices, Phys. Rev. B 88(19), 195130 (2013)
CrossRef ADS Google scholar
[17]
D. Zanchi and H. Schulz, Weakly correlated electrons on a square lattice: Renormalization-group theory, Phys. Rev. B 61(20), 13609 (2000)
CrossRef ADS Google scholar
[18]
K. Takeda, N. Uryû, K. Ubukoshi, and K. Hirakawa, Critical exponents in the frustrated Heisenberg antiferromagnet with layered-triangular lattice: VBr2, J. Phys. Soc. Jpn. 55(3), 727 (1986)
CrossRef ADS Google scholar
[19]
K. Aryanpour, W. E. Pickett, and R. T. Scalettar, Dynamical mean-field study of the Mott transition in the half-filled Hubbard model on a triangular lattice, Phys. Rev. B 74(8), 085117 (2006)
CrossRef ADS Google scholar
[20]
T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Finite temperature Mott transition in Hubbard model on anisotropic triangular lattice, Phys. Rev. Lett. 100(7), 076402 (2008)
CrossRef ADS Google scholar
[21]
T. Yoshioka, A. Koga, and N. Kawakami, Quantum phase transitions in the Hubbard model on a triangular lattice, Phys. Rev. Lett. 103(3), 036401 (2009)
CrossRef ADS Google scholar
[22]
A. Bao, Y. H. Chen, and X. Z. Zhang, Quantum phase transitions of fermionic atomsin an anisotropic triangular optical lattice., Chin. Phys. B 22(11), 110309 (2013)
CrossRef ADS Google scholar
[23]
T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2, Phys. Rev. B 77(10), 104413 (2008)
CrossRef ADS Google scholar
[24]
Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Spin liquid state in an organic Mott insulator with a triangular lattice, Phys. Rev. Lett. 91(10), 107001 (2003)
CrossRef ADS Google scholar
[25]
D. X. Yao, Y. L. Loh, E. W. Carlson, and M. Ma, XXZ and Ising spins on the triangular Kagome lattice, Phys. Rev. B 78(2), 024428 (2008)
CrossRef ADS Google scholar
[26]
Y. L. Loh, D. X. Yao, and E. W. Carlson, Dimers on the triangular Kagome lattice, Phys. Rev. B 78(22), 224410 (2008)
CrossRef ADS Google scholar
[27]
J. Zheng and G. Sun, Exact results for Ising models on the triangular Kagomé lattice, Phys. Rev. B 71(5), 052408 (2005)
CrossRef ADS Google scholar
[28]
Y. H. Chen, H. S. Tao, D. X. Yao, and W. M. Liu, Kondo metal and ferrimagnetic insulator on the triangular Kagome lattice, Phys. Rev. Lett. 108(24), 246402 (2012)
CrossRef ADS Google scholar
[29]
Y. L. Loh, D. X. Yao, and E. W. Carlson, Thermodynamics of Ising spins on the triangular Kagome lattice: Exact analytical method and Monte Carlo simulations, Phys. Rev. B 77(13), 134402 (2008)
CrossRef ADS Google scholar
[30]
A. Rüegg, J. Wen, and G. A. Fiete, Topological insulators on the decorated honeycomb lattice, Phys. Rev. B 81(20), 205115 (2010)
CrossRef ADS Google scholar
[31]
H. D. Liu, , Antiferromagnetic metal and Mott transition on Shastry-Sutherland lattice, Sci. Rep. 4, 4829 (2014)
CrossRef ADS Google scholar
[32]
A. Bao, H. S. Tao, H. D. Liu, X. Z. Zhang, and W. M. Liu, Quantum magnetic phase transition in square-octagon lattice, Sci. Rep. 4, 6918 (2014)
CrossRef ADS Google scholar
[33]
M. Kargarian, and G. A. Fiete, Topological phases and phase transitions on the square-octagon lattice, Phys. Rev. B 82(8), 085106 (2010)
CrossRef ADS Google scholar
[34]
X. P. Liu, W. C. Chen, Y. F. Wang, and C. D. Gong, Topological quantum phase transitions on the kagome and squareoctagon lattices, J. Phys.: Condens. Matter 25(30), 305602 (2013)
CrossRef ADS Google scholar
[35]
S. Maruti and L. W. ter Haar, Magnetic properties of the two-dimensional “triangles-in-triangles” Kagomé lattice Cu9X2(cpa)6 (X=F,Cl,Br), J. Appl. Phys. 75(10), 5949 (1994)
CrossRef ADS Google scholar
[36]
M. Gonzalez, F. Cervantes-lee, and L. W. ter Haar, Structural and magnetic properties of the topologically novel 2-D material Cu9F2 cpa)6: A triangulated Kagome- like hexagonal network of Cu(II) trimers interconnected by Cu(II) monomers, Molecular Crystals and Liquid Crystals Science andTechnology A: Molecular Crystals and Liquid Crystals 233(1), 317 (1993)
CrossRef ADS Google scholar
[37]
L. Balents, Spin liquids in frustrated magnets, Nature 464(7286), 199 (2010)
CrossRef ADS Google scholar
[38]
M. P. Shores, B. M. Bartlett, and D. G. Nocera, Spinfrustrated organic-inorganic hybrids of Lindgrenite, J. Am. Chem. Soc. 127(51), 17986 (2005)
CrossRef ADS Google scholar
[39]
M. Sasaki, K. Hukushima, H. Yoshino, and H. Takayama, Scaling analysis of domain-wall free energy in the Edwards−Anderson Ising spin glass in a magnetic field, Phys. Rev. Lett. 99(13), 137202 (2007)
CrossRef ADS Google scholar
[40]
H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda, Exact Dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2, Phys. Rev. Lett. 82(15), 3168 (1999)
CrossRef ADS Google scholar
[41]
M. R. He, R. Yu, and J. Zhu, Reversible wurtzite-tetragonal reconstruction in ZnO(1010) surfaces, Angew. Chem. Int. Ed. Engl. 51(31), 7744 (2012)
CrossRef ADS Google scholar
[42]
M. R. He, R. Yu, and J. Zhu, Subangstrom profile imaging of relaxed ZnO(101 ¯0) surfaces., Nano Lett. 12(2), 704 (2012)
CrossRef ADS Google scholar
[43]
H. F. Lin, Y. H. Chen, H. D. Liu, H. S. Tao, and W. M. Liu, Mott transition and antiferromagnetism of cold fermions in the decorated honeycomb lattice, Phys. Rev. A 90(5), 053627 (2014)
CrossRef ADS Google scholar
[44]
C. J. Bolech, S. S. Kancharla, and G. Kotliar, Cellular dynamical mean-field theory for the one-dimensional extended Hubbard model, Phys. Rev. B 67(7), 075110 (2003)
CrossRef ADS Google scholar
[45]
K. Haule, Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base, Phys. Rev. B 75(15), 155113 (2007)
CrossRef ADS Google scholar
[46]
T. Kita, T. Ohashi, and S. Suga, Spatial fluctuations of spin and orbital in two-orbital Hubbard model: cluster dynamical mean field study, J. Phys. Conf. Ser. 150(4), 042094 (2009)
CrossRef ADS Google scholar
[47]
G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Cellular dynamical mean field approach to strongly correlated systems, Phys. Rev. Lett. 87(18), 186401 (2001)
CrossRef ADS Google scholar
[48]
B. Kyung, G. Kotliar, and A. M. S. Tremblay, Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory, Phys. Rev. B 73(20), 205106 (2006)
CrossRef ADS Google scholar
[49]
A. Lichtenstein and M. Katsnelson, Antiferromagnetism and d-wave superconductivity in cuprates: A cluster dynamical mean-field theory, Phys. Rev. B 62(14), R9283 (2000)
CrossRef ADS Google scholar
[50]
A. Liebsch, Correlated Dirac fermions on the honeycomb lattice studied within cluster dynamical mean field theory, Phys. Rev. B 83(3), 035113 (2011)
CrossRef ADS Google scholar
[51]
O. Parcollet, G. Biroli, and G. Kotliar, Cluster dynamical mean field analysis of the Mott transition, Phys. Rev. Lett. 92(22), 226402 (2004)
CrossRef ADS Google scholar
[52]
H. Park, K. Haule, and G. Kotliar, Cluster dynamical mean field theory of the Mott transition, Phys. Rev. Lett. 101(18), 186403 (2008)
CrossRef ADS Google scholar
[53]
H. S. Tao, Y. H. Chen, H. F. Lin, H. D. Liu, and W. M. Liu, Layer anti-ferromagnetism on bilayer honeycomb lattice, Sci. Rep. 4, 5367 (2014)
CrossRef ADS Google scholar
[54]
E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Continuous-time Monte Carlo methods for quantum impurity models, Rev. Mod. Phys. 83(2), 349 (2011)
CrossRef ADS Google scholar
[55]
P. Kornilovitch, Continuous-time quantum Monte Carlo algorithm for the lattice polaron, Phys. Rev. Lett. 81(24), 5382 (1998)
CrossRef ADS Google scholar
[56]
A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Continuous-time quantum Monte Carlo method for fermions, Phys. Rev. B 72(3), 035122 (2005)
CrossRef ADS Google scholar
[57]
P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Continuous-time solver for quantum impurity models, Phys. Rev. Lett. 97(7), 076405 (2006)
CrossRef ADS Google scholar
[58]
J. Hubbard, The dielectric theory of electronic interactions in solids, Proc. Phys. Soc. A 68(11), 976 (1955)
CrossRef ADS Google scholar
[59]
J. Hubbard, The description of collective motions in terms of many-body perturbation theory, Proc. Royal Soc. Math. Phys. Eng. Sci. 240(1223), 539 (1957)
CrossRef ADS Google scholar
[60]
J. Hubbard, The description of collective motions in terms of many-body perturbation theory (II): The correlation energy of a free-electron gas, Proc. Royal Soc. Math. Phys. Eng. Sci. 243(1234), 336 (1958)
CrossRef ADS Google scholar
[61]
J. Hubbard, Calculation of partition functions, Phys. Rev. Lett. 3(2), 77 (1959)
CrossRef ADS Google scholar
[62]
J. Hubbard, Electron correlations in narrow energy bands, Proc. Royal Soc. Math. Phys. Eng. Sci. 276(1365), 238 (1963)
CrossRef ADS Google scholar
[63]
J. Hubbard, Electron correlations in narrow energy bands (III): An improved solution, Proc. Royal Soc. Math. Phys. Eng. Sci. 281(1386), 401 (1964)
CrossRef ADS Google scholar
[64]
M. Jarrell and J. E. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rep. 269(3), 133 (1996)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1684 KB)

Accesses

Citations

Detail

Sections
Recommended

/