Quantum phase transitions in two-dimensional strongly correlated fermion systems
Bao An(保安), Chen Yao-Hua(陈耀华), Lin Heng-Fu(林恒福), Liu Hai-Di(刘海迪), Zhang Xiao-Zhong(章晓中)
Quantum phase transitions in two-dimensional strongly correlated fermion systems
In this article, we review our recent work on quantum phase transition in two-dimensional strongly correlated fermion systems. We discuss the metal−insulator transition properties of these systems by calculating the density of states, double occupancy, and Fermi surface evolution using a combination of the cellular dynamical mean-field theory (CDMFT) and the continuous-time quantum Monte Carlo algorithm. Furthermore, we explore the magnetic properties of each state by defining magnetic order parameters. Rich phase diagrams with many intriguing quantum states, including antiferromagnetic metal, paramagnetic metal, Kondo metal, and ferromagnetic insulator, were found for the two-dimensional lattices with strongly correlated fermions. We believe that our results would lead to a better understanding of the properties of real materials.
quantum phase transition / two-dimensional lattices / fermions / cellular dynamical mean-field theory / continuous-time quantum Monte Carlo
[1] |
T. Pruschke, M. Jarrell, and J. Freericks, Anomalous normal-state properties of high-Tc superconductors: Intrinsic properties of strongly correlated electron systems, Adv. Phys. 44(2), 187 (1995)
CrossRef
ADS
Google scholar
|
[2] |
P. Fendley and K. Schoutens, Exact results for strongly correlated fermions in 2+1 dimensions, Phys. Rev. Lett. 95(4), 046403 (2005)
CrossRef
ADS
Google scholar
|
[3] |
W. Krauth, M. Caffarel, and J. P. Bouchaud, Gutzwiller wave function for a model of strongly interacting bosons, Phys. Rev. B 45(6), 3137 (1992)
CrossRef
ADS
Google scholar
|
[4] |
M. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Krishnamurthy, Nonlocal dynamical correlations of strongly interacting electron systems, Phys. Rev. B 58(12), R7475 (1998)
CrossRef
ADS
Google scholar
|
[5] |
K. M. O’Hara,
CrossRef
ADS
Google scholar
|
[6] |
E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M. Gustavsson, M. Dalmonte, G. Pupillo, and H. C. Nägerl, Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons, Nature 466(7306), 597 (2010)
CrossRef
ADS
Google scholar
|
[7] |
M. Capone,
CrossRef
ADS
Google scholar
|
[8] |
A. Georges, G. Kotliar, and Q. Si, Strongly correlated systems in infinite dimensions and their zero dimensional counterparts, Int. J. Mod. Phys. B 06(05n06), 705 (1992)
|
[9] |
A. Ramirez, Strongly geometrically frustrated magnets, Annu. Rev. Mater. Sci. 24(1), 453 (1994)
CrossRef
ADS
Google scholar
|
[10] |
Y. Yang and C. Thompson, Thermodynamics of the strongly correlated Hubbard model, J. Phys. Math. Gen. 24(6), L279 (1991)
CrossRef
ADS
Google scholar
|
[11] |
J. H. Wu, R. Qi, A. C. Ji, and W. M. Liu, Quantum tunneling of ultracold atoms in optical traps, Front. Phys. 9(2), 137 (2014)
CrossRef
ADS
Google scholar
|
[12] |
S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose−Einstein condensates, Front. Phys. 8(3), 302 (2013)
CrossRef
ADS
Google scholar
|
[13] |
A. Lüscher and A. M. Läuchli, Exact diagonalization study of the antiferromagnetic spin-1/2 Heisenberg model on the square lattice in a magnetic field, Phys. Rev. B 79(19), 195102 (2009)
CrossRef
ADS
Google scholar
|
[14] |
D. Betts, H. Lin, and J. Flynn, Improved finite-lattice estimates of the properties of two quantum spin models on the infinite square lattice, Can. J. Phys. 77(5), 353 (1999)
CrossRef
ADS
Google scholar
|
[15] |
C. C. Chang and R. T. Scalettar, Quantum disordered phase near the Mott transition in the staggered-flux Hubbard model on a square lattice, Phys. Rev. Lett. 109(2), 026404 (2012)
CrossRef
ADS
Google scholar
|
[16] |
Y. H. Chen, J. Li, and C. S. Ting, Topological phase transitions with non-Abelian gauge potentials on square lattices, Phys. Rev. B 88(19), 195130 (2013)
CrossRef
ADS
Google scholar
|
[17] |
D. Zanchi and H. Schulz, Weakly correlated electrons on a square lattice: Renormalization-group theory, Phys. Rev. B 61(20), 13609 (2000)
CrossRef
ADS
Google scholar
|
[18] |
K. Takeda, N. Uryû, K. Ubukoshi, and K. Hirakawa, Critical exponents in the frustrated Heisenberg antiferromagnet with layered-triangular lattice: VBr2, J. Phys. Soc. Jpn. 55(3), 727 (1986)
CrossRef
ADS
Google scholar
|
[19] |
K. Aryanpour, W. E. Pickett, and R. T. Scalettar, Dynamical mean-field study of the Mott transition in the half-filled Hubbard model on a triangular lattice, Phys. Rev. B 74(8), 085117 (2006)
CrossRef
ADS
Google scholar
|
[20] |
T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Finite temperature Mott transition in Hubbard model on anisotropic triangular lattice, Phys. Rev. Lett. 100(7), 076402 (2008)
CrossRef
ADS
Google scholar
|
[21] |
T. Yoshioka, A. Koga, and N. Kawakami, Quantum phase transitions in the Hubbard model on a triangular lattice, Phys. Rev. Lett. 103(3), 036401 (2009)
CrossRef
ADS
Google scholar
|
[22] |
A. Bao, Y. H. Chen, and X. Z. Zhang, Quantum phase transitions of fermionic atomsin an anisotropic triangular optical lattice., Chin. Phys. B 22(11), 110309 (2013)
CrossRef
ADS
Google scholar
|
[23] |
T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2, Phys. Rev. B 77(10), 104413 (2008)
CrossRef
ADS
Google scholar
|
[24] |
Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Spin liquid state in an organic Mott insulator with a triangular lattice, Phys. Rev. Lett. 91(10), 107001 (2003)
CrossRef
ADS
Google scholar
|
[25] |
D. X. Yao, Y. L. Loh, E. W. Carlson, and M. Ma, XXZ and Ising spins on the triangular Kagome lattice, Phys. Rev. B 78(2), 024428 (2008)
CrossRef
ADS
Google scholar
|
[26] |
Y. L. Loh, D. X. Yao, and E. W. Carlson, Dimers on the triangular Kagome lattice, Phys. Rev. B 78(22), 224410 (2008)
CrossRef
ADS
Google scholar
|
[27] |
J. Zheng and G. Sun, Exact results for Ising models on the triangular Kagomé lattice, Phys. Rev. B 71(5), 052408 (2005)
CrossRef
ADS
Google scholar
|
[28] |
Y. H. Chen, H. S. Tao, D. X. Yao, and W. M. Liu, Kondo metal and ferrimagnetic insulator on the triangular Kagome lattice, Phys. Rev. Lett. 108(24), 246402 (2012)
CrossRef
ADS
Google scholar
|
[29] |
Y. L. Loh, D. X. Yao, and E. W. Carlson, Thermodynamics of Ising spins on the triangular Kagome lattice: Exact analytical method and Monte Carlo simulations, Phys. Rev. B 77(13), 134402 (2008)
CrossRef
ADS
Google scholar
|
[30] |
A. Rüegg, J. Wen, and G. A. Fiete, Topological insulators on the decorated honeycomb lattice, Phys. Rev. B 81(20), 205115 (2010)
CrossRef
ADS
Google scholar
|
[31] |
H. D. Liu,
CrossRef
ADS
Google scholar
|
[32] |
A. Bao, H. S. Tao, H. D. Liu, X. Z. Zhang, and W. M. Liu, Quantum magnetic phase transition in square-octagon lattice, Sci. Rep. 4, 6918 (2014)
CrossRef
ADS
Google scholar
|
[33] |
M. Kargarian, and G. A. Fiete, Topological phases and phase transitions on the square-octagon lattice, Phys. Rev. B 82(8), 085106 (2010)
CrossRef
ADS
Google scholar
|
[34] |
X. P. Liu, W. C. Chen, Y. F. Wang, and C. D. Gong, Topological quantum phase transitions on the kagome and squareoctagon lattices, J. Phys.: Condens. Matter 25(30), 305602 (2013)
CrossRef
ADS
Google scholar
|
[35] |
S. Maruti and L. W. ter Haar, Magnetic properties of the two-dimensional “triangles-in-triangles” Kagomé lattice Cu9X2(cpa)6 (X=F,Cl,Br), J. Appl. Phys. 75(10), 5949 (1994)
CrossRef
ADS
Google scholar
|
[36] |
M. Gonzalez, F. Cervantes-lee, and L. W. ter Haar, Structural and magnetic properties of the topologically novel 2-D material Cu9F2 cpa)6: A triangulated Kagome- like hexagonal network of Cu(II) trimers interconnected by Cu(II) monomers, Molecular Crystals and Liquid Crystals Science andTechnology A: Molecular Crystals and Liquid Crystals 233(1), 317 (1993)
CrossRef
ADS
Google scholar
|
[37] |
L. Balents, Spin liquids in frustrated magnets, Nature 464(7286), 199 (2010)
CrossRef
ADS
Google scholar
|
[38] |
M. P. Shores, B. M. Bartlett, and D. G. Nocera, Spinfrustrated organic-inorganic hybrids of Lindgrenite, J. Am. Chem. Soc. 127(51), 17986 (2005)
CrossRef
ADS
Google scholar
|
[39] |
M. Sasaki, K. Hukushima, H. Yoshino, and H. Takayama, Scaling analysis of domain-wall free energy in the Edwards−Anderson Ising spin glass in a magnetic field, Phys. Rev. Lett. 99(13), 137202 (2007)
CrossRef
ADS
Google scholar
|
[40] |
H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda, Exact Dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2, Phys. Rev. Lett. 82(15), 3168 (1999)
CrossRef
ADS
Google scholar
|
[41] |
M. R. He, R. Yu, and J. Zhu, Reversible wurtzite-tetragonal reconstruction in ZnO(1010) surfaces, Angew. Chem. Int. Ed. Engl. 51(31), 7744 (2012)
CrossRef
ADS
Google scholar
|
[42] |
M. R. He, R. Yu, and J. Zhu, Subangstrom profile imaging of relaxed ZnO(
CrossRef
ADS
Google scholar
|
[43] |
H. F. Lin, Y. H. Chen, H. D. Liu, H. S. Tao, and W. M. Liu, Mott transition and antiferromagnetism of cold fermions in the decorated honeycomb lattice, Phys. Rev. A 90(5), 053627 (2014)
CrossRef
ADS
Google scholar
|
[44] |
C. J. Bolech, S. S. Kancharla, and G. Kotliar, Cellular dynamical mean-field theory for the one-dimensional extended Hubbard model, Phys. Rev. B 67(7), 075110 (2003)
CrossRef
ADS
Google scholar
|
[45] |
K. Haule, Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base, Phys. Rev. B 75(15), 155113 (2007)
CrossRef
ADS
Google scholar
|
[46] |
T. Kita, T. Ohashi, and S. Suga, Spatial fluctuations of spin and orbital in two-orbital Hubbard model: cluster dynamical mean field study, J. Phys. Conf. Ser. 150(4), 042094 (2009)
CrossRef
ADS
Google scholar
|
[47] |
G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Cellular dynamical mean field approach to strongly correlated systems, Phys. Rev. Lett. 87(18), 186401 (2001)
CrossRef
ADS
Google scholar
|
[48] |
B. Kyung, G. Kotliar, and A. M. S. Tremblay, Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory, Phys. Rev. B 73(20), 205106 (2006)
CrossRef
ADS
Google scholar
|
[49] |
A. Lichtenstein and M. Katsnelson, Antiferromagnetism and d-wave superconductivity in cuprates: A cluster dynamical mean-field theory, Phys. Rev. B 62(14), R9283 (2000)
CrossRef
ADS
Google scholar
|
[50] |
A. Liebsch, Correlated Dirac fermions on the honeycomb lattice studied within cluster dynamical mean field theory, Phys. Rev. B 83(3), 035113 (2011)
CrossRef
ADS
Google scholar
|
[51] |
O. Parcollet, G. Biroli, and G. Kotliar, Cluster dynamical mean field analysis of the Mott transition, Phys. Rev. Lett. 92(22), 226402 (2004)
CrossRef
ADS
Google scholar
|
[52] |
H. Park, K. Haule, and G. Kotliar, Cluster dynamical mean field theory of the Mott transition, Phys. Rev. Lett. 101(18), 186403 (2008)
CrossRef
ADS
Google scholar
|
[53] |
H. S. Tao, Y. H. Chen, H. F. Lin, H. D. Liu, and W. M. Liu, Layer anti-ferromagnetism on bilayer honeycomb lattice, Sci. Rep. 4, 5367 (2014)
CrossRef
ADS
Google scholar
|
[54] |
E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Continuous-time Monte Carlo methods for quantum impurity models, Rev. Mod. Phys. 83(2), 349 (2011)
CrossRef
ADS
Google scholar
|
[55] |
P. Kornilovitch, Continuous-time quantum Monte Carlo algorithm for the lattice polaron, Phys. Rev. Lett. 81(24), 5382 (1998)
CrossRef
ADS
Google scholar
|
[56] |
A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Continuous-time quantum Monte Carlo method for fermions, Phys. Rev. B 72(3), 035122 (2005)
CrossRef
ADS
Google scholar
|
[57] |
P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Continuous-time solver for quantum impurity models, Phys. Rev. Lett. 97(7), 076405 (2006)
CrossRef
ADS
Google scholar
|
[58] |
J. Hubbard, The dielectric theory of electronic interactions in solids, Proc. Phys. Soc. A 68(11), 976 (1955)
CrossRef
ADS
Google scholar
|
[59] |
J. Hubbard, The description of collective motions in terms of many-body perturbation theory, Proc. Royal Soc. Math. Phys. Eng. Sci. 240(1223), 539 (1957)
CrossRef
ADS
Google scholar
|
[60] |
J. Hubbard, The description of collective motions in terms of many-body perturbation theory (II): The correlation energy of a free-electron gas, Proc. Royal Soc. Math. Phys. Eng. Sci. 243(1234), 336 (1958)
CrossRef
ADS
Google scholar
|
[61] |
J. Hubbard, Calculation of partition functions, Phys. Rev. Lett. 3(2), 77 (1959)
CrossRef
ADS
Google scholar
|
[62] |
J. Hubbard, Electron correlations in narrow energy bands, Proc. Royal Soc. Math. Phys. Eng. Sci. 276(1365), 238 (1963)
CrossRef
ADS
Google scholar
|
[63] |
J. Hubbard, Electron correlations in narrow energy bands (III): An improved solution, Proc. Royal Soc. Math. Phys. Eng. Sci. 281(1386), 401 (1964)
CrossRef
ADS
Google scholar
|
[64] |
M. Jarrell and J. E. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rep. 269(3), 133 (1996)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |