Hawking radiation from a five-dimensional Lovelock black hole

Mahamat Saleh , Bouetou Thomas Bouetou , Timoleon Crepin Kofane

Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 100401

PDF (187KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 100401 DOI: 10.1007/s11467-015-0497-6
RESEARCH ARTICLE

Hawking radiation from a five-dimensional Lovelock black hole

Author information +
History +
PDF (187KB)

Abstract

We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton–Jacobi method. The behavior of the rate of radiation is plotted for various values of the ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.

Keywords

Hawking radiation / Lovelock black hole / Hamilton–Jacobi method

Cite this article

Download citation ▾
Mahamat Saleh, Bouetou Thomas Bouetou, Timoleon Crepin Kofane. Hawking radiation from a five-dimensional Lovelock black hole. Front. Phys., 2015, 10(5): 100401 DOI:10.1007/s11467-015-0497-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Q. Jiang and S. Q. Wu, Hawking radiation of charged particles as tunneling from Reissner−Nordström−de Sitter black holes with a global monopole, Phys. Lett. B 635(2−3), 151 (2006)

[2]

Yu. P. Goncharov, and N. E. Firsova, Hawking radiation for twisted complex scalar fields on the Reissner−Nordstr¨om black holes and Dirac monopoles, Nucl. Phys. B 486(1−2), 371 (1997)

[3]

Z. Zhai and W. Liu, A new method to study the Hawking radiation of the charged black hole with a global monopole, Astrophys. Space Sci. 325(1), 63 (2010)

[4]

R. Zhao, L. C. Zhang, and H. F. Li, Hawking radiation of charged particles in Reissner−Nordström black hole, Commum. Theor. Phys. 53(3), 499 (2010)

[5]

K. X. Jiang, S. M. Ke, and D. T. Peng, Hawking radiation as tunneling and the unified first law of thermodynamics for a class of dynamical black holes, Int. J. Mod. Phys. D 18(11), 1707 (2009)

[6]

H. Pasaoglu and I. Sakalli, Hawking radiation of linear Dilaton black holes in various theories, Int. J. Theor. Phys. 48(12), 3517 (2009)

[7]

S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)

[8]

S. W. Hawking, Black hole explosions, Nature 30, 248 (1974)

[9]

P. Kraus and F. Wilczek, Self-interaction correction to black hole radiance, Nucl. Phys. B 433(2), 403 (1995)

[10]

P. Kraus and F. Wilczek, Effect of self-interaction on charged black hole radiance, Nucl. Phys. B 437(1), 231 (1995)

[11]

M. K. Parikh, and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85(24), 5042 (2000)

[12]

T.-M. He and J.-Y. Zhang, Tunneling radiation from a static spherically symmetric black hole surrounded by quintessence, Commum. Theor. Phys. 52(4), 619 (2009)

[13]

D. Chen and X. Zu, Massive particle tunnels from the Taub-NUT black hole, Acta Phys. Pol. B 39, 1329 (2008)

[14]

R. Zhao, L. C. Zhang, and H. F. Li, Hawking radiation of charged particles in Reissner−Nordström black hole, Commum. Theor. Phys. 53(3), 499 (2010)

[15]

Q. Q. Jiang and S. Q. Wu, Hawking radiation of charged particles as tunneling from Reissner−Nordström−de Sitter black holes with a global monopole, Phys. Lett. B 635(2−3), 151 (2006)

[16]

Q. Q. Jiang, Fermions tunnelling from GHS and nonextremal D1−D5 black holes, Phys. Lett. B 666(5), 517 (2008)

[17]

D. Y. Chen, Q. Q. Jiang, and X. T. Zu, Hawking radiation of Dirac particles via tunnelling from rotating black holes in de Sitter spaces, Phys. Lett. B 665(2−3), 106 (2008)

[18]

D. J. Qi and H. Q. Ru, Quantum tunneling of dirac particles from the generalized spherical symmetric evaporating charged black hole, Int. J. Theor. Phys. 50(1), 269 (2011)

[19]

D. J. Qi, Dirac particles’ tunneling radiation from dilaton space-time with squashed horizons, Commum. Theor. Phys. 56(6), 1171 (2011)

[20]

Q. Q. Jiang and Y. Han, On black hole spectroscopy via adiabatic invariance, Phys. Lett. B 718(2), 584 (2012)

[21]

C. Z. Liu and G. X. Yu, Entropy spectrum and area spectrum of a modified Schwarzschild black hole via an action invariance, JETP Lett. 100(10), 615 (2015)

[22]

W. Y. Wen, Nonthermal correction to black hole spectroscopy, Eur. Phys. J. C 75(2), 78 (2015)

[23]

S. W. Zhou, G. R. Chen, and Y. C. Huang, Entropy spectrum of a KS black hole in IR modified Hořava−Lifshitz gravity, Adv. High Energy Phys. 2014, 396453 (2014)

[24]

Q. Q. Jiang, D. Y. Chen and D. Wen, Remark on massive particle’s de Sitter tunneling, J. Cosmol. Astropart. Phys. 11(2013) 027

[25]

H. L. Li and R. Lin, Spectroscopy from the d-dimensional Reissner−Nordström black hole via adiabatic covariant action, Eur. Phys. J. C 73(2), 2316 (2013)

[26]

L. Vanzo, G. Acquaviva, and R. D. Criscienzo, Tunnelling methods and Hawking’s radiation: Achievements and prospects, Class. Quantum Gravity 28(18), 183001 (2011)

[27]

H. Ding and W. Liu, Hawking radiation from a Vaidya black hole by Hamilton−Jacobi method, Front. Phys. 6(1), 106 (2011)

[28]

K. Lin and S.-Z. Yang, Fermions tunneling from nonstationary Dilaton−Maxwell black hole via general tortoise coordinate transformation, Chin. Phys. Lett. 26(10), 100401 (2009)

[29]

Y. X. Chen and K. N. Shao, Invariance of the Hamilton-Jacobi tunneling method for black holes and FRW model, arXiv: 1007.4367v2

[30]

J. J. Liu, D. Y. Chen, and S. Z. Yang, A new method to study the Hawking radiation of the charged black hole with a gloabal monopole, Rom. J. Physiol. 53, 659 (2008)

[31]

M. Saleh, B. T. Bouetou, and T. C. Kofane, Quasinormal modes and Hawking radiation of a Reissner−Nordström black hole surrounded by quintessence, Astrophys. Space Sci. 333(2), 449 (2011)

[32]

R. G. Cai, L. M. Cao, and Y. P. Hu, Hawking radiation of an apparent horizon in a FRW universe, Class. Quantum Gravity 26(15), 155018 (2009)

[33]

H. Gohar and K. Saifullah, Scalar field radiation from dilatonic black holes, Gen. Relativ. Gravit. 44(12), 3163 (2012)

[34]

M. Aiello, R. Ferraro, and G. Giribet, Exact solutions of Lovelock−Born−Infeld black holes, Phys. Rev. D 70(10), 104014 (2004)

[35]

J. H. Chen and Y. J. Wang, Quasinormal modes of the scalar field in five-dimensional Lovelock black hole spacetime, Chin. Phys. B 19(6), 060401 (2010)

[36]

M. Agheben, M. Nadalini, L. Vanzo, and S. Zerbini, Hawking radiation as tunneling for extremal and rotating black holes, J. High Energy Phys. 0505, 014 (2005)

[37]

K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D 60(2), 24007 (1999)

[38]

S. Shankaranarayanan, K. Srinivasan, and T. Padmanabhan, Method of complex paths and general covariance of Hawking radiation, Mod. Phys. Lett. A 16(09), 571 (2001)

[39]

S. Shankaranarayanan, T. Padmanabhan, and K. Srinivasan, Hawking radiation in different coordinate settings: Complex paths approach, Class. Quantum Gravity 19(10), 2671 (2002)

[40]

J. D. Barrow and D. J. Shaw, The value of the cosmological constant, Gen. Relativ. Gravit. 43(10), 2555 (2011)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (187KB)

928

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/