Hawking radiation from a five-dimensional Lovelock black hole

Mahamat Saleh, Bouetou Thomas Bouetou, Timoleon Crepin Kofane

PDF(187 KB)
PDF(187 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 100401. DOI: 10.1007/s11467-015-0497-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Hawking radiation from a five-dimensional Lovelock black hole

Author information +
History +

Abstract

We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton–Jacobi method. The behavior of the rate of radiation is plotted for various values of the ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.

Keywords

Hawking radiation / Lovelock black hole / Hamilton–Jacobi method

Cite this article

Download citation ▾
Mahamat Saleh, Bouetou Thomas Bouetou, Timoleon Crepin Kofane. Hawking radiation from a five-dimensional Lovelock black hole. Front. Phys., 2015, 10(5): 100401 https://doi.org/10.1007/s11467-015-0497-6

References

[1]
Q. Q. Jiang and S. Q. Wu, Hawking radiation of charged particles as tunneling from Reissner−Nordström−de Sitter black holes with a global monopole, Phys. Lett. B 635(2−3), 151 (2006)
CrossRef ADS Google scholar
[2]
Yu. P. Goncharov, and N. E. Firsova, Hawking radiation for twisted complex scalar fields on the Reissner−Nordstr¨om black holes and Dirac monopoles, Nucl. Phys. B 486(1−2), 371 (1997)
CrossRef ADS Google scholar
[3]
Z. Zhai and W. Liu, A new method to study the Hawking radiation of the charged black hole with a global monopole, Astrophys. Space Sci. 325(1), 63 (2010)
CrossRef ADS Google scholar
[4]
R. Zhao, L. C. Zhang, and H. F. Li, Hawking radiation of charged particles in Reissner−Nordström black hole, Commum. Theor. Phys. 53(3), 499 (2010)
CrossRef ADS Google scholar
[5]
K. X. Jiang, S. M. Ke, and D. T. Peng, Hawking radiation as tunneling and the unified first law of thermodynamics for a class of dynamical black holes, Int. J. Mod. Phys. D 18(11), 1707 (2009)
CrossRef ADS Google scholar
[6]
H. Pasaoglu and I. Sakalli, Hawking radiation of linear Dilaton black holes in various theories, Int. J. Theor. Phys. 48(12), 3517 (2009)
CrossRef ADS Google scholar
[7]
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
CrossRef ADS Google scholar
[8]
S. W. Hawking, Black hole explosions, Nature 30, 248 (1974)
CrossRef ADS Google scholar
[9]
P. Kraus and F. Wilczek, Self-interaction correction to black hole radiance, Nucl. Phys. B 433(2), 403 (1995)
CrossRef ADS Google scholar
[10]
P. Kraus and F. Wilczek, Effect of self-interaction on charged black hole radiance, Nucl. Phys. B 437(1), 231 (1995)
CrossRef ADS Google scholar
[11]
M. K. Parikh, and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85(24), 5042 (2000)
CrossRef ADS Google scholar
[12]
T.-M. He and J.-Y. Zhang, Tunneling radiation from a static spherically symmetric black hole surrounded by quintessence, Commum. Theor. Phys. 52(4), 619 (2009)
CrossRef ADS Google scholar
[13]
D. Chen and X. Zu, Massive particle tunnels from the Taub-NUT black hole, Acta Phys. Pol. B 39, 1329 (2008)
[14]
R. Zhao, L. C. Zhang, and H. F. Li, Hawking radiation of charged particles in Reissner−Nordström black hole, Commum. Theor. Phys. 53(3), 499 (2010)
CrossRef ADS Google scholar
[15]
Q. Q. Jiang and S. Q. Wu, Hawking radiation of charged particles as tunneling from Reissner−Nordström−de Sitter black holes with a global monopole, Phys. Lett. B 635(2−3), 151 (2006)
CrossRef ADS Google scholar
[16]
Q. Q. Jiang, Fermions tunnelling from GHS and nonextremal D1−D5 black holes, Phys. Lett. B 666(5), 517 (2008)
CrossRef ADS Google scholar
[17]
D. Y. Chen, Q. Q. Jiang, and X. T. Zu, Hawking radiation of Dirac particles via tunnelling from rotating black holes in de Sitter spaces, Phys. Lett. B 665(2−3), 106 (2008)
CrossRef ADS Google scholar
[18]
D. J. Qi and H. Q. Ru, Quantum tunneling of dirac particles from the generalized spherical symmetric evaporating charged black hole, Int. J. Theor. Phys. 50(1), 269 (2011)
CrossRef ADS Google scholar
[19]
D. J. Qi, Dirac particles’ tunneling radiation from dilaton space-time with squashed horizons, Commum. Theor. Phys. 56(6), 1171 (2011)
CrossRef ADS Google scholar
[20]
Q. Q. Jiang and Y. Han, On black hole spectroscopy via adiabatic invariance, Phys. Lett. B 718(2), 584 (2012)
CrossRef ADS Google scholar
[21]
C. Z. Liu and G. X. Yu, Entropy spectrum and area spectrum of a modified Schwarzschild black hole via an action invariance, JETP Lett. 100(10), 615 (2015)
CrossRef ADS Google scholar
[22]
W. Y. Wen, Nonthermal correction to black hole spectroscopy, Eur. Phys. J. C 75(2), 78 (2015)
CrossRef ADS Google scholar
[23]
S. W. Zhou, G. R. Chen, and Y. C. Huang, Entropy spectrum of a KS black hole in IR modified Hořava−Lifshitz gravity, Adv. High Energy Phys. 2014, 396453 (2014)
CrossRef ADS Google scholar
[24]
Q. Q. Jiang, D. Y. Chen and D. Wen, Remark on massive particle’s de Sitter tunneling, J. Cosmol. Astropart. Phys. 11(2013) 027
CrossRef ADS Google scholar
[25]
H. L. Li and R. Lin, Spectroscopy from the d-dimensional Reissner−Nordström black hole via adiabatic covariant action, Eur. Phys. J. C 73(2), 2316 (2013)
CrossRef ADS Google scholar
[26]
L. Vanzo, G. Acquaviva, and R. D. Criscienzo, Tunnelling methods and Hawking’s radiation: Achievements and prospects, Class. Quantum Gravity 28(18), 183001 (2011)
CrossRef ADS Google scholar
[27]
H. Ding and W. Liu, Hawking radiation from a Vaidya black hole by Hamilton−Jacobi method, Front. Phys. 6(1), 106 (2011)
CrossRef ADS Google scholar
[28]
K. Lin and S.-Z. Yang, Fermions tunneling from nonstationary Dilaton−Maxwell black hole via general tortoise coordinate transformation, Chin. Phys. Lett. 26(10), 100401 (2009)
CrossRef ADS Google scholar
[29]
Y. X. Chen and K. N. Shao, Invariance of the Hamilton-Jacobi tunneling method for black holes and FRW model, arXiv: 1007.4367v2
[30]
J. J. Liu, D. Y. Chen, and S. Z. Yang, A new method to study the Hawking radiation of the charged black hole with a gloabal monopole, Rom. J. Physiol. 53, 659 (2008)
[31]
M. Saleh, B. T. Bouetou, and T. C. Kofane, Quasinormal modes and Hawking radiation of a Reissner−Nordström black hole surrounded by quintessence, Astrophys. Space Sci. 333(2), 449 (2011)
CrossRef ADS Google scholar
[32]
R. G. Cai, L. M. Cao, and Y. P. Hu, Hawking radiation of an apparent horizon in a FRW universe, Class. Quantum Gravity 26(15), 155018 (2009)
CrossRef ADS Google scholar
[33]
H. Gohar and K. Saifullah, Scalar field radiation from dilatonic black holes, Gen. Relativ. Gravit. 44(12), 3163 (2012)
CrossRef ADS Google scholar
[34]
M. Aiello, R. Ferraro, and G. Giribet, Exact solutions of Lovelock−Born−Infeld black holes, Phys. Rev. D 70(10), 104014 (2004)
CrossRef ADS Google scholar
[35]
J. H. Chen and Y. J. Wang, Quasinormal modes of the scalar field in five-dimensional Lovelock black hole spacetime, Chin. Phys. B 19(6), 060401 (2010)
CrossRef ADS Google scholar
[36]
M. Agheben, M. Nadalini, L. Vanzo, and S. Zerbini, Hawking radiation as tunneling for extremal and rotating black holes, J. High Energy Phys. 0505, 014 (2005)
[37]
K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D 60(2), 24007 (1999)
CrossRef ADS Google scholar
[38]
S. Shankaranarayanan, K. Srinivasan, and T. Padmanabhan, Method of complex paths and general covariance of Hawking radiation, Mod. Phys. Lett. A 16(09), 571 (2001)
CrossRef ADS Google scholar
[39]
S. Shankaranarayanan, T. Padmanabhan, and K. Srinivasan, Hawking radiation in different coordinate settings: Complex paths approach, Class. Quantum Gravity 19(10), 2671 (2002)
CrossRef ADS Google scholar
[40]
J. D. Barrow and D. J. Shaw, The value of the cosmological constant, Gen. Relativ. Gravit. 43(10), 2555 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(187 KB)

Accesses

Citations

Detail

Sections
Recommended

/