First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb

Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang

PDF(783 KB)
PDF(783 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107101. DOI: 10.1007/s11467-015-0496-7
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb

Author information +
History +

Abstract

The structural, mechanical, electronic, and bonding properties and phase transition of NaZnSb are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory. With the help of the quasi-harmonic Debye model, we probe the Grüneisen parameter, thermal expansivity, heat capacity, Debye temperature, and entropy of NaZnSb in the tetragonal phase. The results indicate that the lattice constants and the bulk modulus and its first pressure derivative agree well with the available theoretical and experimental data. NaZnSb in its ground state structure exhibits a distinct energy gap of about 0.41 eV, which increases with increasing pressure. Our conclusions are consistent with the theoretical predictions obtained by the ABINIT package, but are different from those obtained through the tight-binding linear muffin-tin orbital method. As a result, further experimental and theoretical researches need to be carried out. For the purpose of providing a comparative and complementary study for future research, we first investigate the thermodynamic properties of NaZnSb.

Graphical abstract

Keywords

density functional theory / structural properties / mechanical properties / electronic properties

Cite this article

Download citation ▾
Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb. Front. Phys., 2015, 10(4): 107101 https://doi.org/10.1007/s11467-015-0496-7

References

[1]
B. Balke, J. Barth, M. Schwall, G. H. Fecher, and C. Felser, An alternative approach to improve the thermoelectric properties of half-Heusler compounds, J. Electron. Mater. 40(5), 702 (2011)
CrossRef ADS Google scholar
[2]
J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Orthorhombic ABC semiconductors as antiferroelectrics, Phys. Rev. Lett. 110(1), 017603 (2013)
CrossRef ADS Google scholar
[3]
J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Hexagonal ABC semiconductors as ferroelectrics, Phys. Rev. Lett. 109(16), 167602 (2012)
CrossRef ADS Google scholar
[4]
S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, Tunable multifunctional topological insulators in ternary Heusler compounds, Nat. Mater. 9(7), 541 (2010)
CrossRef ADS Google scholar
[5]
H. Lin, A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9(7), 546 (2010)
CrossRef ADS Google scholar
[6]
H. J. Zhang, S. Chadov, L. Müchler, B. Yan, X. L. Qi, J. Kübler, S. C. Zhang, and C. Felser, Topological insulators in ternary compounds with a honeycomb lattice, Phys. Rev. Lett. 106(15), 156402 (2011)
CrossRef ADS Google scholar
[7]
A. Roy, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Half-Heusler semiconductors as piezoelectrics, Phys. Rev. Lett. 109(3), 037602 (2012)
CrossRef ADS Google scholar
[8]
J. W. Bennett, I. Grinberg, and A. M. Rappe, New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: A theoretical study, J. Am. Chem. Soc. 130(51), 17409 (2008)
CrossRef ADS Google scholar
[9]
J.W. Bennett, I. Grinberg, P. K. Davies, and A. M. Rappe, Pb-free semiconductor ferroelectrics: A theoretical study of Pd-substituted Ba(Ti1-xCex)O3 solid solutions, Phys. Rev. B 82(18), 184106 (2010)
CrossRef ADS Google scholar
[10]
G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNix)O3-x solid solutions: Effects of cation arrangement on band gap, Phys. Rev. B 83(20), 205115 (2011)
CrossRef ADS Google scholar
[11]
D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81(7), 075208 (2010)
CrossRef ADS Google scholar
[12]
S. Kacimi, H. Mehnane, and A. Zaoui, I-II-V and I-IIIIV half-Heusler compounds for optoelectronic applications: Comparative ab initio study, J. Alloys Compd. 587, 451 (2014)
CrossRef ADS Google scholar
[13]
M. S. Lee, F. P. Poudeu, and S. D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds, Phys. Rev. B 83(8), 085204 (2011)
CrossRef ADS Google scholar
[14]
A. F. May, E. S. Toberer, and G. J. Snyder, Transport properties of the layered Zintl compound SrZnSb2, J. Appl. Phys. 106(1), 013706 (2009)
CrossRef ADS Google scholar
[15]
D. M. Wood, A. Zunger, and R. de Groot, Electronic structure of filled tetrahedral semiconductors, Phys. Rev. B 31(4), 2570 (1985)
CrossRef ADS Google scholar
[16]
R. Bacewicz and T. F. Ciszek, Preparation and characterization of some AIBIICIII type semiconductors, Appl. Phys. Lett. 52(14), 1150 (1988)
CrossRef ADS Google scholar
[17]
A. Beleanu, M. Mondeshki, Q. Juan, F. Casper, C. Felser, and F. Porcher, Systematical, experimental investigations on LiMgZ (Z= P, As, Sb) wide band gap semiconductors, J. Phys. D 44(47), 475302 (2011)
CrossRef ADS Google scholar
[18]
A. H. Reshak and S. Auluck, Thermoelectric properties of Nowotny–Juza NaZnX (X= P, As and Sb) compounds, Comput. Mater. Sci. 96, 90 (2015)
CrossRef ADS Google scholar
[19]
A. H. Reshak, Nowotny–Juza NaZnX (X= P, As and Sb) as photovoltaic materials, Sol. Energy 115, 430 (2015)
CrossRef ADS Google scholar
[20]
G. Jaiganesh, T. Merita Anto Britto, R. D. Eithiraj, and G. Kalpana, Electronic and structural properties of NaZnX (X= P, As, Sb): An ab initio study, J. Phys.: Condens. Matter 20(8), 085220 (2008)
CrossRef ADS Google scholar
[21]
Z. Charifi, H. Baaziz, S. Noui, Ş. Uğur, G. Uğur, A. İyigör, A. Candan, and Y. AlDouri, Phase transition of Nowotny– Juza NaZnX (X= P, As and Sb) compounds at high pressure: Theoretical investigation of structural, electronic and vibrational properties, Comput. Mater. Sci. 87, 187 (2014)
CrossRef ADS Google scholar
[22]
W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef ADS Google scholar
[23]
B. Zhu, Y. Cheng, Z. W. Niu, M. Zhou, and M. Gong, LDA+U calculation of structural and thermodynamic properties of Ce2O3, Front. Phys. 9(4), 483 (2014)
CrossRef ADS Google scholar
[24]
B. Hammer, L. B. Hansen, and J. K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)
CrossRef ADS Google scholar
[25]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[26]
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58(8), 1200 (1980)
CrossRef ADS Google scholar
[27]
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
CrossRef ADS Google scholar
[28]
J. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
CrossRef ADS Google scholar
[29]
X. L. Yuan, M. A. Xue, W. Chen, and T. Q. An, Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1-x alloys under high pressure, Front. Phys. 9(2), 219 (2014)
CrossRef ADS Google scholar
[30]
Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys. 8(4), 405 (2013)
CrossRef ADS Google scholar
[31]
B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys. 131(1), 233 (1997)
CrossRef ADS Google scholar
[32]
B. B. Karki, G. J. Ackland, and J. Crain, Elastic instabilities in crystals from ab initio stress-strain relations, J. Phys.: Condens. Matter 9(41), 8579 (1997)
CrossRef ADS Google scholar
[33]
R. M. Wentzcovitch, N. L. Ross, and G. D. Price, Ab initio study of MgSiO3and CaSiO3 perovskites at lower-mantle pressures, Phys. Earth Planet. Inter. 90(1-2), 101 (1995)
CrossRef ADS Google scholar
[34]
Z. L. Lv, Y. Cheng, X. R. Chen, and G. F. Ji, Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation, J. Alloys Compd. 570, 156 (2013)
CrossRef ADS Google scholar
[35]
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Soc. London A 65(5), 349 (1952)
CrossRef ADS Google scholar
[36]
M. A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158(1), 57 (2004)
CrossRef ADS Google scholar
[37]
M. Flórez, J. M. Recio, E. Francisco, M. A. Blanco, and A. M. Pendas, First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B 66(14), 144112 (2002)
CrossRef ADS Google scholar
[38]
E. Francisco, M. A. Blanco, and G. Sanjurjo, Atomistic simulation of SrF2 polymorphs, Phys. Rev. B 63(9), 094107 (2001)
CrossRef ADS Google scholar
[39]
D. Vogel, P. Kruger, and J. Pollmann, Structural and electronic properties of group-III nitrides, Phys. Rev. B 55(19), 12836 (1997)
CrossRef ADS Google scholar
[40]
G. K. H. Madsen, Automated search for new thermoelectric materials: The case of LiZnSb, J. Am. Chem. Soc. 128(37), 12140 (2006)
CrossRef ADS Google scholar
[41]
F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
CrossRef ADS Google scholar
[42]
M. P. Ghimire, T. P. Sandeep, T. P. Sinha, and R. K. Thapa, First principles study of the electronic and magnetic properties of semi-Heusler alloys NiXSb (X= Ti, V, Cr and Mn), J. Alloys Compd. 509(41), 9742 (2011)
CrossRef ADS Google scholar
[43]
S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z. K. Liu, Firstprinciples calculations of pure elements: Equations of state and elastic stiffness constants, Comput. Mater. Sci. 48(4), 813 (2010)
CrossRef ADS Google scholar
[44]
P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloys Compd. 526, 74 (2012)
CrossRef ADS Google scholar
[45]
Y. Fan, Y. N. Osetsky, S. Yip, and B. Yildiz, Onset mechanism of strain-rate-induced flow stress upturn, Phys. Rev. Lett. 109(13), 135503 (2012)
CrossRef ADS Google scholar
[46]
Y. Fan, Y. N. Osetskiy, S. Yip, and B. Yildiz, Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations, Proc. Natl. Acad. Sci. USA 110(44), 17756 (2013)
CrossRef ADS Google scholar
[47]
P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891 (1998)
CrossRef ADS Google scholar
[48]
J. He, E. Wu, H. Wang, R. Liu, and Y. Tian, Ionicities of boron-boron bonds in B12 icosahedra, Phys. Rev. Lett. 94(1), 015504 (2005)
CrossRef ADS Google scholar
[49]
S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)
CrossRef ADS Google scholar
[50]
R. S. Mulliken, Electronic population analysis on LCAO– MO molecular wave functions, J. Chem. Phys. 23(10), 1833 (1955)
CrossRef ADS Google scholar
[51]
M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(783 KB)

Accesses

Citations

Detail

Sections
Recommended

/