First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb
Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang
First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb
The structural, mechanical, electronic, and bonding properties and phase transition of NaZnSb are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory. With the help of the quasi-harmonic Debye model, we probe the Grüneisen parameter, thermal expansivity, heat capacity, Debye temperature, and entropy of NaZnSb in the tetragonal phase. The results indicate that the lattice constants and the bulk modulus and its first pressure derivative agree well with the available theoretical and experimental data. NaZnSb in its ground state structure exhibits a distinct energy gap of about 0.41 eV, which increases with increasing pressure. Our conclusions are consistent with the theoretical predictions obtained by the ABINIT package, but are different from those obtained through the tight-binding linear muffin-tin orbital method. As a result, further experimental and theoretical researches need to be carried out. For the purpose of providing a comparative and complementary study for future research, we first investigate the thermodynamic properties of NaZnSb.
density functional theory / structural properties / mechanical properties / electronic properties
[1] |
B. Balke, J. Barth, M. Schwall, G. H. Fecher, and C. Felser, An alternative approach to improve the thermoelectric properties of half-Heusler compounds, J. Electron. Mater. 40(5), 702 (2011)
CrossRef
ADS
Google scholar
|
[2] |
J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Orthorhombic ABC semiconductors as antiferroelectrics, Phys. Rev. Lett. 110(1), 017603 (2013)
CrossRef
ADS
Google scholar
|
[3] |
J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Hexagonal ABC semiconductors as ferroelectrics, Phys. Rev. Lett. 109(16), 167602 (2012)
CrossRef
ADS
Google scholar
|
[4] |
S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, Tunable multifunctional topological insulators in ternary Heusler compounds, Nat. Mater. 9(7), 541 (2010)
CrossRef
ADS
Google scholar
|
[5] |
H. Lin, A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9(7), 546 (2010)
CrossRef
ADS
Google scholar
|
[6] |
H. J. Zhang, S. Chadov, L. Müchler, B. Yan, X. L. Qi, J. Kübler, S. C. Zhang, and C. Felser, Topological insulators in ternary compounds with a honeycomb lattice, Phys. Rev. Lett. 106(15), 156402 (2011)
CrossRef
ADS
Google scholar
|
[7] |
A. Roy, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Half-Heusler semiconductors as piezoelectrics, Phys. Rev. Lett. 109(3), 037602 (2012)
CrossRef
ADS
Google scholar
|
[8] |
J. W. Bennett, I. Grinberg, and A. M. Rappe, New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: A theoretical study, J. Am. Chem. Soc. 130(51), 17409 (2008)
CrossRef
ADS
Google scholar
|
[9] |
J.W. Bennett, I. Grinberg, P. K. Davies, and A. M. Rappe, Pb-free semiconductor ferroelectrics: A theoretical study of Pd-substituted Ba(Ti1-xCex)O3 solid solutions, Phys. Rev. B 82(18), 184106 (2010)
CrossRef
ADS
Google scholar
|
[10] |
G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNix)O3-x solid solutions: Effects of cation arrangement on band gap, Phys. Rev. B 83(20), 205115 (2011)
CrossRef
ADS
Google scholar
|
[11] |
D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81(7), 075208 (2010)
CrossRef
ADS
Google scholar
|
[12] |
S. Kacimi, H. Mehnane, and A. Zaoui, I-II-V and I-IIIIV half-Heusler compounds for optoelectronic applications: Comparative ab initio study, J. Alloys Compd. 587, 451 (2014)
CrossRef
ADS
Google scholar
|
[13] |
M. S. Lee, F. P. Poudeu, and S. D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds, Phys. Rev. B 83(8), 085204 (2011)
CrossRef
ADS
Google scholar
|
[14] |
A. F. May, E. S. Toberer, and G. J. Snyder, Transport properties of the layered Zintl compound SrZnSb2, J. Appl. Phys. 106(1), 013706 (2009)
CrossRef
ADS
Google scholar
|
[15] |
D. M. Wood, A. Zunger, and R. de Groot, Electronic structure of filled tetrahedral semiconductors, Phys. Rev. B 31(4), 2570 (1985)
CrossRef
ADS
Google scholar
|
[16] |
R. Bacewicz and T. F. Ciszek, Preparation and characterization of some AIBIICIII type semiconductors, Appl. Phys. Lett. 52(14), 1150 (1988)
CrossRef
ADS
Google scholar
|
[17] |
A. Beleanu, M. Mondeshki, Q. Juan, F. Casper, C. Felser, and F. Porcher, Systematical, experimental investigations on LiMgZ (Z= P, As, Sb) wide band gap semiconductors, J. Phys. D 44(47), 475302 (2011)
CrossRef
ADS
Google scholar
|
[18] |
A. H. Reshak and S. Auluck, Thermoelectric properties of Nowotny–Juza NaZnX (X= P, As and Sb) compounds, Comput. Mater. Sci. 96, 90 (2015)
CrossRef
ADS
Google scholar
|
[19] |
A. H. Reshak, Nowotny–Juza NaZnX (X= P, As and Sb) as photovoltaic materials, Sol. Energy 115, 430 (2015)
CrossRef
ADS
Google scholar
|
[20] |
G. Jaiganesh, T. Merita Anto Britto, R. D. Eithiraj, and G. Kalpana, Electronic and structural properties of NaZnX (X= P, As, Sb): An ab initio study, J. Phys.: Condens. Matter 20(8), 085220 (2008)
CrossRef
ADS
Google scholar
|
[21] |
Z. Charifi, H. Baaziz, S. Noui, Ş. Uğur, G. Uğur, A. İyigör, A. Candan, and Y. AlDouri, Phase transition of Nowotny– Juza NaZnX (X= P, As and Sb) compounds at high pressure: Theoretical investigation of structural, electronic and vibrational properties, Comput. Mater. Sci. 87, 187 (2014)
CrossRef
ADS
Google scholar
|
[22] |
W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef
ADS
Google scholar
|
[23] |
B. Zhu, Y. Cheng, Z. W. Niu, M. Zhou, and M. Gong, LDA+U calculation of structural and thermodynamic properties of Ce2O3, Front. Phys. 9(4), 483 (2014)
CrossRef
ADS
Google scholar
|
[24] |
B. Hammer, L. B. Hansen, and J. K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)
CrossRef
ADS
Google scholar
|
[25] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[26] |
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58(8), 1200 (1980)
CrossRef
ADS
Google scholar
|
[27] |
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
CrossRef
ADS
Google scholar
|
[28] |
J. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
CrossRef
ADS
Google scholar
|
[29] |
X. L. Yuan, M. A. Xue, W. Chen, and T. Q. An, Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1-x alloys under high pressure, Front. Phys. 9(2), 219 (2014)
CrossRef
ADS
Google scholar
|
[30] |
Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys. 8(4), 405 (2013)
CrossRef
ADS
Google scholar
|
[31] |
B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys. 131(1), 233 (1997)
CrossRef
ADS
Google scholar
|
[32] |
B. B. Karki, G. J. Ackland, and J. Crain, Elastic instabilities in crystals from ab initio stress-strain relations, J. Phys.: Condens. Matter 9(41), 8579 (1997)
CrossRef
ADS
Google scholar
|
[33] |
R. M. Wentzcovitch, N. L. Ross, and G. D. Price, Ab initio study of MgSiO3and CaSiO3 perovskites at lower-mantle pressures, Phys. Earth Planet. Inter. 90(1-2), 101 (1995)
CrossRef
ADS
Google scholar
|
[34] |
Z. L. Lv, Y. Cheng, X. R. Chen, and G. F. Ji, Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation, J. Alloys Compd. 570, 156 (2013)
CrossRef
ADS
Google scholar
|
[35] |
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Soc. London A 65(5), 349 (1952)
CrossRef
ADS
Google scholar
|
[36] |
M. A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158(1), 57 (2004)
CrossRef
ADS
Google scholar
|
[37] |
M. Flórez, J. M. Recio, E. Francisco, M. A. Blanco, and A. M. Pendas, First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B 66(14), 144112 (2002)
CrossRef
ADS
Google scholar
|
[38] |
E. Francisco, M. A. Blanco, and G. Sanjurjo, Atomistic simulation of SrF2 polymorphs, Phys. Rev. B 63(9), 094107 (2001)
CrossRef
ADS
Google scholar
|
[39] |
D. Vogel, P. Kruger, and J. Pollmann, Structural and electronic properties of group-III nitrides, Phys. Rev. B 55(19), 12836 (1997)
CrossRef
ADS
Google scholar
|
[40] |
G. K. H. Madsen, Automated search for new thermoelectric materials: The case of LiZnSb, J. Am. Chem. Soc. 128(37), 12140 (2006)
CrossRef
ADS
Google scholar
|
[41] |
F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
CrossRef
ADS
Google scholar
|
[42] |
M. P. Ghimire, T. P. Sandeep, T. P. Sinha, and R. K. Thapa, First principles study of the electronic and magnetic properties of semi-Heusler alloys NiXSb (X= Ti, V, Cr and Mn), J. Alloys Compd. 509(41), 9742 (2011)
CrossRef
ADS
Google scholar
|
[43] |
S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z. K. Liu, Firstprinciples calculations of pure elements: Equations of state and elastic stiffness constants, Comput. Mater. Sci. 48(4), 813 (2010)
CrossRef
ADS
Google scholar
|
[44] |
P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloys Compd. 526, 74 (2012)
CrossRef
ADS
Google scholar
|
[45] |
Y. Fan, Y. N. Osetsky, S. Yip, and B. Yildiz, Onset mechanism of strain-rate-induced flow stress upturn, Phys. Rev. Lett. 109(13), 135503 (2012)
CrossRef
ADS
Google scholar
|
[46] |
Y. Fan, Y. N. Osetskiy, S. Yip, and B. Yildiz, Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations, Proc. Natl. Acad. Sci. USA 110(44), 17756 (2013)
CrossRef
ADS
Google scholar
|
[47] |
P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891 (1998)
CrossRef
ADS
Google scholar
|
[48] |
J. He, E. Wu, H. Wang, R. Liu, and Y. Tian, Ionicities of boron-boron bonds in B12 icosahedra, Phys. Rev. Lett. 94(1), 015504 (2005)
CrossRef
ADS
Google scholar
|
[49] |
S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)
CrossRef
ADS
Google scholar
|
[50] |
R. S. Mulliken, Electronic population analysis on LCAO– MO molecular wave functions, J. Chem. Phys. 23(10), 1833 (1955)
CrossRef
ADS
Google scholar
|
[51] |
M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |