First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb

Jian-Bing Gu , Chen-Ju Wang , Lin Zhang , Yan Cheng , Xiang-Dong Yang

Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107101

PDF (783KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107101 DOI: 10.1007/s11467-015-0496-7
RESEARCH ARTICLE

First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb

Author information +
History +
PDF (783KB)

Abstract

The structural, mechanical, electronic, and bonding properties and phase transition of NaZnSb are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory. With the help of the quasi-harmonic Debye model, we probe the Grüneisen parameter, thermal expansivity, heat capacity, Debye temperature, and entropy of NaZnSb in the tetragonal phase. The results indicate that the lattice constants and the bulk modulus and its first pressure derivative agree well with the available theoretical and experimental data. NaZnSb in its ground state structure exhibits a distinct energy gap of about 0.41 eV, which increases with increasing pressure. Our conclusions are consistent with the theoretical predictions obtained by the ABINIT package, but are different from those obtained through the tight-binding linear muffin-tin orbital method. As a result, further experimental and theoretical researches need to be carried out. For the purpose of providing a comparative and complementary study for future research, we first investigate the thermodynamic properties of NaZnSb.

Graphical abstract

Keywords

density functional theory / structural properties / mechanical properties / electronic properties

Cite this article

Download citation ▾
Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb. Front. Phys., 2015, 10(4): 107101 DOI:10.1007/s11467-015-0496-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Balke, J. Barth, M. Schwall, G. H. Fecher, and C. Felser, An alternative approach to improve the thermoelectric properties of half-Heusler compounds, J. Electron. Mater. 40(5), 702 (2011)

[2]

J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Orthorhombic ABC semiconductors as antiferroelectrics, Phys. Rev. Lett. 110(1), 017603 (2013)

[3]

J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Hexagonal ABC semiconductors as ferroelectrics, Phys. Rev. Lett. 109(16), 167602 (2012)

[4]

S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, Tunable multifunctional topological insulators in ternary Heusler compounds, Nat. Mater. 9(7), 541 (2010)

[5]

H. Lin, A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9(7), 546 (2010)

[6]

H. J. Zhang, S. Chadov, L. Müchler, B. Yan, X. L. Qi, J. Kübler, S. C. Zhang, and C. Felser, Topological insulators in ternary compounds with a honeycomb lattice, Phys. Rev. Lett. 106(15), 156402 (2011)

[7]

A. Roy, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Half-Heusler semiconductors as piezoelectrics, Phys. Rev. Lett. 109(3), 037602 (2012)

[8]

J. W. Bennett, I. Grinberg, and A. M. Rappe, New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: A theoretical study, J. Am. Chem. Soc. 130(51), 17409 (2008)

[9]

J.W. Bennett, I. Grinberg, P. K. Davies, and A. M. Rappe, Pb-free semiconductor ferroelectrics: A theoretical study of Pd-substituted Ba(Ti1−xCex)O3 solid solutions, Phys. Rev. B 82(18), 184106 (2010)

[10]

G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−xNix)O3−x solid solutions: Effects of cation arrangement on band gap, Phys. Rev. B 83(20), 205115 (2011)

[11]

D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81(7), 075208 (2010)

[12]

S. Kacimi, H. Mehnane, and A. Zaoui, I-II-V and I-IIIIV half-Heusler compounds for optoelectronic applications: Comparative ab initio study, J. Alloys Compd. 587, 451 (2014)

[13]

M. S. Lee, F. P. Poudeu, and S. D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds, Phys. Rev. B 83(8), 085204 (2011)

[14]

A. F. May, E. S. Toberer, and G. J. Snyder, Transport properties of the layered Zintl compound SrZnSb2, J. Appl. Phys. 106(1), 013706 (2009)

[15]

D. M. Wood, A. Zunger, and R. de Groot, Electronic structure of filled tetrahedral semiconductors, Phys. Rev. B 31(4), 2570 (1985)

[16]

R. Bacewicz and T. F. Ciszek, Preparation and characterization of some AIBIICIII type semiconductors, Appl. Phys. Lett. 52(14), 1150 (1988)

[17]

A. Beleanu, M. Mondeshki, Q. Juan, F. Casper, C. Felser, and F. Porcher, Systematical, experimental investigations on LiMgZ (Z= P, As, Sb) wide band gap semiconductors, J. Phys. D 44(47), 475302 (2011)

[18]

A. H. Reshak and S. Auluck, Thermoelectric properties of Nowotny–Juza NaZnX (X= P, As and Sb) compounds, Comput. Mater. Sci. 96, 90 (2015)

[19]

A. H. Reshak, Nowotny–Juza NaZnX (X= P, As and Sb) as photovoltaic materials, Sol. Energy 115, 430 (2015)

[20]

G. Jaiganesh, T. Merita Anto Britto, R. D. Eithiraj, and G. Kalpana, Electronic and structural properties of NaZnX (X= P, As, Sb): An ab initio study, J. Phys.: Condens. Matter 20(8), 085220 (2008)

[21]

Z. Charifi, H. Baaziz, S. Noui, Ş. Uğur, G. Uğur, A. İyigör, A. Candan, and Y. AlDouri, Phase transition of Nowotny– Juza NaZnX (X= P, As and Sb) compounds at high pressure: Theoretical investigation of structural, electronic and vibrational properties, Comput. Mater. Sci. 87, 187 (2014)

[22]

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)

[23]

B. Zhu, Y. Cheng, Z. W. Niu, M. Zhou, and M. Gong, LDA+U calculation of structural and thermodynamic properties of Ce2O3, Front. Phys. 9(4), 483 (2014)

[24]

B. Hammer, L. B. Hansen, and J. K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)

[25]

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

[26]

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58(8), 1200 (1980)

[27]

D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)

[28]

J. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)

[29]

X. L. Yuan, M. A. Xue, W. Chen, and T. Q. An, Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1−x alloys under high pressure, Front. Phys. 9(2), 219 (2014)

[30]

Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys. 8(4), 405 (2013)

[31]

B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen, Relaxation of crystals with the quasi-Newton method, J. Comput. Phys. 131(1), 233 (1997)

[32]

B. B. Karki, G. J. Ackland, and J. Crain, Elastic instabilities in crystals from ab initio stress-strain relations, J. Phys.: Condens. Matter 9(41), 8579 (1997)

[33]

R. M. Wentzcovitch, N. L. Ross, and G. D. Price, Ab initio study of MgSiO3and CaSiO3 perovskites at lower-mantle pressures, Phys. Earth Planet. Inter. 90(1−2), 101 (1995)

[34]

Z. L. Lv, Y. Cheng, X. R. Chen, and G. F. Ji, Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation, J. Alloys Compd. 570, 156 (2013)

[35]

R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Soc. London A 65(5), 349 (1952)

[36]

M. A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158(1), 57 (2004)

[37]

M. Flórez, J. M. Recio, E. Francisco, M. A. Blanco, and A. M. Pendas, First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B 66(14), 144112 (2002)

[38]

E. Francisco, M. A. Blanco, and G. Sanjurjo, Atomistic simulation of SrF2 polymorphs, Phys. Rev. B 63(9), 094107 (2001)

[39]

D. Vogel, P. Kruger, and J. Pollmann, Structural and electronic properties of group-III nitrides, Phys. Rev. B 55(19), 12836 (1997)

[40]

G. K. H. Madsen, Automated search for new thermoelectric materials: The case of LiZnSb, J. Am. Chem. Soc. 128(37), 12140 (2006)

[41]

F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)

[42]

M. P. Ghimire, T. P. Sandeep, T. P. Sinha, and R. K. Thapa, First principles study of the electronic and magnetic properties of semi-Heusler alloys NiXSb (X= Ti, V, Cr and Mn), J. Alloys Compd. 509(41), 9742 (2011)

[43]

S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z. K. Liu, Firstprinciples calculations of pure elements: Equations of state and elastic stiffness constants, Comput. Mater. Sci. 48(4), 813 (2010)

[44]

P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloys Compd. 526, 74 (2012)

[45]

Y. Fan, Y. N. Osetsky, S. Yip, and B. Yildiz, Onset mechanism of strain-rate-induced flow stress upturn, Phys. Rev. Lett. 109(13), 135503 (2012)

[46]

Y. Fan, Y. N. Osetskiy, S. Yip, and B. Yildiz, Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations, Proc. Natl. Acad. Sci. USA 110(44), 17756 (2013)

[47]

P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891 (1998)

[48]

J. He, E. Wu, H. Wang, R. Liu, and Y. Tian, Ionicities of boron-boron bonds in B12 icosahedra, Phys. Rev. Lett. 94(1), 015504 (2005)

[49]

S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)

[50]

R. S. Mulliken, Electronic population analysis on LCAO– MO molecular wave functions, J. Chem. Phys. 23(10), 1833 (1955)

[51]

M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (783KB)

1380

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/