Discrete vortices on anisotropic lattices

Gui-Hua Chen, Hong-Cheng Wang, Zi-Fa Chen

PDF(1592 KB)
PDF(1592 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 104206. DOI: 10.1007/s11467-015-0494-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Discrete vortices on anisotropic lattices

Author information +
History +

Abstract

We consider the effects of anisotropy on two types of localized states with topological charges equal to 1 in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. We find that on-site-centered vortices with different propagation constants are not globally stable, and that upper and lower boundaries of the propagation constant exist. The region between these two boundaries is the domain outside of which the on-site-centered vortices are unstable. This region decreases in size as the anisotropy parameter is gradually increased. We also consider off-site-centered vortices on anisotropic lattices, which are unstable on this lattice type and either transform into stable quadrupoles or collapse. We find that the transformation of off-sitecentered vortices into quadrupoles, which occurs on anisotropic lattices, cannot occur on isotropic lattices. In the quadrupole case, a propagation-constant region also exists, outside of which the localized states cannot stably exist. The influence of anisotropy on this region is almost identical to its effects on the on-site-centered vortex case.

Graphical abstract

Keywords

anisotropy / discrete vortex / quadrupole / localized state

Cite this article

Download citation ▾
Gui-Hua Chen, Hong-Cheng Wang, Zi-Fa Chen. Discrete vortices on anisotropic lattices. Front. Phys., 2015, 10(4): 104206 https://doi.org/10.1007/s11467-015-0494-9

References

[1]
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424(6950), 817 (2003)
CrossRef ADS Google scholar
[2]
F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463(1-3), 1 (2008)
CrossRef ADS Google scholar
[3]
I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1-2), 1 (2012)
CrossRef ADS Google scholar
[4]
Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial solitons: Historical overview and recent advances, Prog. Phys. 75(8), 086401 (2012)
CrossRef ADS Google scholar
[5]
C. Lou, L. Tang, D. Song, X. Wang, J. Xu, and Z. Chen, Novel spatial solitons in light-induced photonic bandgap structures, Front. Phys. 3(1), 1 (2008)
CrossRef ADS Google scholar
[6]
Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, Defect-mediated discrete solitons in optically induced photorefractive lattices, Phys. Rev. A 80(4), 043824 (2009)
CrossRef ADS Google scholar
[7]
Y. Li, B. A. Malomed, J. Wu, W. Pang, S. Wang, and J. Zhou, Quasicompactons in inverted nonlinear photonic crystals, Phys. Rev. A 84(4), 043839 (2011)
CrossRef ADS Google scholar
[8]
J. H. Huang, H. J. Li, X. Y. Zhang, and Y. Y. Li, Transmission, reflection, scattering, and trapping of traveling discrete solitons by c and v point defects, Front. Phys. 10(2), 104201 (2015)
CrossRef ADS Google scholar
[9]
Y. Zhang, K. Lu, M. Zhang, K. Li, S. Liu, and Y. Zhang, Dynamics of incoherent photovoltaic spatial solitons, Chin. Phys. Lett. 3, 132 (2009)
[10]
B. Lü and Q. Tian, Discrete breathers in a two-dimensional Morse lattice with an on-site harmonic potential, Front. Phys. 4(4), 497 (2009)
CrossRef ADS Google scholar
[11]
W. Pang, J. Wu, Z. Yuan, Y. Liu, and G. Chen, Lattice solitons in optical lattice controlled by electromagnetically induced transparency, J. Phys. Soc. Jpn. 80(11), 113401 (2011)
CrossRef ADS Google scholar
[12]
Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett. 106(9), 093904 (2011)
CrossRef ADS Google scholar
[13]
Y. Zhang, Z. Nie, Y. Zhao, C. Li, R. Wang, J. Si, and M. Xiao, Modulated vortex solitons of four-wave mixing, Opt. Express 18(11), 10963 (2010)
CrossRef ADS Google scholar
[14]
Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, Surface solitons of four-wave mixing in an electromagnetically induced lattice, Laser Phys. Lett. 10(5), 055406 (2013)
CrossRef ADS Google scholar
[15]
R. Wang, Z. Wu, Y. Zhang, Z. Zhang, C. Yuan, H. Zheng, Y. Li, J. Zhang, and Y. Zhang, Observation of multi-component spatial vector solitons of four-wave mixing, Opt. Express 20(13), 14168 (2012)
CrossRef ADS Google scholar
[16]
Y. Zhang, Z. Wu, C. Yuan, X. Yao, K. Lu, M. Belíc, and Y. Zhang, Optical vortices induced in nonlinear multilevel atomic vapors, Opt. Lett. 37(21), 4507 (2012)
CrossRef ADS Google scholar
[17]
G. Chen, Z. Huang, and Z. Mai, Two-dimensional discrete Anderson location in waveguide matrix, J. Nonlinear Opt. Phys. 23(03), 1450033 (2014)
CrossRef ADS Google scholar
[18]
X. Y. Zhang, J. L. Chai, J. S. Huang, Z. Q. Chen, Y. Y. Li, and B. A. Malomed, Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT-symmetric defect, Opt. Express 22(11), 13927 (2014)
CrossRef ADS Google scholar
[19]
B. A. Malomed and P. G. Kevrekidis, Discrete vortex solitons, Phys. Rev. E 64(2), 026601 (2001)
CrossRef ADS Google scholar
[20]
J. Yang and Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094 (2003)
CrossRef ADS Google scholar
[21]
H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices, Phys. Rev. Lett. 92(12), 123902 (2004)
CrossRef ADS Google scholar
[22]
D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett. 92(12), 123903 (2004)
CrossRef ADS Google scholar
[23]
J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, Observation of vortex-ring “discrete” solitons in 2D photonic lattices, Phys. Rev. Lett. 92(12), 123904 (2004)
CrossRef ADS Google scholar
[24]
P. G. Kevrekidis, B. A. Malomed, Z. Chen, and D. J. Frantzeskakis, Stable higher-order vortices and quasivortices in the discrete nonlinear Schrödinger equation, Phys. Rev. E 70(5), 056612 (2004)
CrossRef ADS Google scholar
[25]
T. J. Alexander, A. A. Sukhorukov, and Y. S. Kivshar, Asymmetric vortex solitons in nonlinear periodic lattices, Phys. Rev. Lett. 93(6), 063901 (2004)
CrossRef ADS Google scholar
[26]
D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis, Nonlinear schrödinger lattices (ii): Persistence and stability of discrete vortices, arXiv: nlin/0411016v1 (2004)
[27]
Z. Chen, J. Liu, S. Fu, Y. Li, and B. A. Malomed, Discrete solitons and vortices on two-dimensional lattices of Ptsymmetric couplers, Opt. Express 22(24), 29679 (2014)
CrossRef ADS Google scholar
[28]
Y. Zhang, M. Belíc, Z. Wu, C. Yuan, R. Wang, K. Lu, and Y. Zhang, Multicharged optical vortices induced in a dissipative atomic vapor system, Phys. Rev. A 88(1), 013847 (2013)
CrossRef ADS Google scholar
[29]
H. Li, X. Zhu, Z. Shi, B. A. Malomed, T. Lai, and C. Lee, Bulk vortices and half-vortex surface modes in parity-timesymmetric media, Phys. Rev. A 89(5), 053811 (2014)
CrossRef ADS Google scholar
[30]
G. Chen, H. Huang, and M. Wu, Solitary vortices in twodimensional waveguide matrix, J. Nonlinear Opt. Phys. 24, 1550012 (2015)
CrossRef ADS Google scholar
[31]
J. Yang, I. Makasyuk, H. Martin, P. G. Kevrekidis, B. A. Malomed, D. J. Frantzeskakis, and Z. Chen, Necklace-like solitons in optically induced photonic lattices, Phys. Rev. Lett. 94(11), 113902 (2005)
CrossRef ADS Google scholar
[32]
P. G. Kevrekidis, B. A. Malomed, D. J. Frantzeskakis, and R. Carretero-González, Three dimensional solitary waves and vortices in a discrete nonlinear Schrödinger lattice, Phys. Rev. Lett. 93(8), 080403 (2004)
CrossRef ADS Google scholar
[33]
P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, B. A. Malomed, and A. R. Bishop, Discrete solitons and vortices on anisotropic lattices, Phys. Rev. E 72(4), 046613 (2005)
CrossRef ADS Google scholar
[34]
T. Mayteevarunyooa, B. A. Malomed, B. B. Baizakov, and M. Salerno, Matter-wave vortices and solitons in anisotropic optical lattices, Physica D 238(15), 1439 (2009)
CrossRef ADS Google scholar
[35]
N. K. Efremidis, S. Sears, D. N. Christodoulides, J.W. Fleischer, and M. Segev, Discrete solitons in photorefractive optically induced photonic lattices, Phys. Rev. E 66(4), 046602 (2002)
CrossRef ADS Google scholar
[36]
A. A. Sukhorukov, Y. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, Spatial optical solitons in waveguide arrays, IEEE J. Quantum Electron. 39(1), 31 (2003)
CrossRef ADS Google scholar
[37]
J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett. 90(2), 023902 (2003)
CrossRef ADS Google scholar
[38]
J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Dipole solitons in optically induced two-dimensional photonic lattices, Opt. Lett. 29(14), 1662 (2004)
CrossRef ADS Google scholar
[39]
Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains, Phys. Rev. Lett. 92(14), 143902 (2004)
CrossRef ADS Google scholar
[40]
Z. Chen, A. Bezryadina, I. Makasyuk, and J. Yang, Observation of two-dimensional lattice vector solitons, Opt. Lett. 29(14), 1656 (2004)
CrossRef ADS Google scholar
[41]
Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Arrayed and checkerboard optical waveguides controlled by the electromagnetically induced transparency, Phys. Rev. A 82(6), 063813 (2010)
CrossRef ADS Google scholar
[42]
J. Wu, M. Feng, W. Pang, S. Fu, and Y. Li, The transmission of quasi-discrete solitons in resonant waveguide arrays activated by the electromagnetically induced transparency, J. Nonlinear Opt. Phys. 20(02), 193 (2011)
CrossRef ADS Google scholar
[43]
P. G. Kevrekidis and D. J. Frantzeskakis, Pattern forming dynamical instabilities of Bose-Einstein condensates, Mod. Phys. Lett. B 18(05n06), 173 (2004)
[44]
V. A. Brazhnyi and V. V. Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B 18(14), 627 (2004)
CrossRef ADS Google scholar
[45]
P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, and I. G. Kevrekidis, Vortices in Bose-Einstein condensates: Some recent developments, Mod. Phys. Lett. B 18(30), 1481 (2004)
CrossRef ADS Google scholar
[46]
M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity 12(3), 673 (1999)
CrossRef ADS Google scholar
[47]
P. G. Kevrekidis, K. O. Rasmussen, and A. R. Bishop, Twodimensional discrete breathers: Construction, stability, and bifurcations, Phys. Rev. E 61(2), 2006 (2000)
CrossRef ADS Google scholar
[48]
P. G. Kevrekidis, K. O. Rasmussen, and A. R. Bishop, Localized excitations and their thresholds, Phys. Rev. E 61(4), 4652 (2000)
CrossRef ADS Google scholar
[49]
P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, Springer, 2009
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1592 KB)

Accesses

Citations

Detail

Sections
Recommended

/