Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air
Cao Li-Ping(曹丽萍), Chen Zhan-Dong(陈战东), Zhang Chun-Ling(张春玲), Yao Jiang-Hong(姚江宏)
Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air
The optical absorption properties of femtosecond-laser-made “black silicon” as a function of the annealing conditions were investigated. We found that the annealing process changes the surface morphology and absorption spectroscopy of the “black silicon” samples, and obtained a maximum sub-band-gap absorptance value of approximately 30% by annealing at 1000 °C for 30 min. The thermal relaxation and atomic structural transformation mechanisms are used to describe the lattice recovery and the increase and decrease of the substitutional dopant atom concentration in the microstructured surface during the annealing. Our results confirm that: i) owing to the thermal relaxation, the lattice defects decrease with the increase of the annealing temperature; ii) the quasi-substitutional and interstitial configurations of the doped atoms transform into substitutional arrangements when the annealing temperature increases; iii) the quasi-substitutional and interstitial configurations with higher energies of the doped atoms transform into interstitial configurations with the lowest energy after high-temperature annealing for a long period of time, causing the deactivation or reactivation of the sub-band-gap absorptance by diffusion. The results demonstrate that the annealing can improve the properties of “black silicon”, including defects repairing, carrier lifetime lengthening, and retention of a high absorptive performance.
sub-band-gap absorptance / black silicon / annealing / diffusion
[1] |
T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett. 73(12), 1673 (1998)
CrossRef
ADS
Google scholar
|
[2] |
R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses, J. Appl. Phys. 93(5), 2626 (2003)
CrossRef
ADS
Google scholar
|
[3] |
T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, Femtosecond laser-induced formation of spikes on silicon, Appl. Phys., A Mater. Sci. Process. 70(4), 383 (2000)
CrossRef
ADS
Google scholar
|
[4] |
M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask, Appl. Phys. Lett. 82(11), 1715 (2003)
CrossRef
ADS
Google scholar
|
[5] |
M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Femtosecond laser-induced formation of submicrometer spikes on silicon in water, Appl. Phys. Lett. 85(23), 5694 (2004)
CrossRef
ADS
Google scholar
|
[6] |
D. Tran, Y. C. Lam, H. Zheng, V. Murukeshan, J. Chai, and D. E. Hardt, Femtosecond laser processing of crystalline silicon, http://hdl.handle.net/1721.1/7449 (2005)
|
[7] |
H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Nanostructured black silicon and the optical reflectance of graded-density surfaces, Appl. Phys. Lett. 94(23), 231121 (2009)
CrossRef
ADS
Google scholar
|
[8] |
T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses, J. Appl. Phys. 110(7), 073106 (2011)
CrossRef
ADS
Google scholar
|
[9] |
J. T. Sullivan, R. G. Wilks, M. T. Winkler, L. Weinhardt, D. Recht, A. J. Said, B. K. Newman, Y. Zhang, M. Blum, S. Krause, W. L. Yang, C. Heske, M. J. Aziz, M. Bär, and T. Buonassisi, Soft x-ray emission spectroscopy studies of the electronic structure of silicon supersaturated with sulfur, Appl. Phys. Lett. 99(14), 142102 (2011)
CrossRef
ADS
Google scholar
|
[10] |
M. T. Winkler, M. J. Sher, Y. T. Lin, M. J. Smith, H. Zhang, S. Gradečak, and E. Mazur, Studying femtosecond-laser hy-perdoping by controlling surface morphology, J. Appl. Phys. 111(9), 093511 (2012)
CrossRef
ADS
Google scholar
|
[11] |
Z. D. Chen, Q. Wu, M. Yang, J. H. Yao, R. A. Rupp, Y. A. Cao, and J. J. Xu, Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air, Opt. Express 21(18), 21329 (2013)
CrossRef
ADS
Google scholar
|
[12] |
C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, Near-unity below-band-gap absorption by microstructured silicon, Appl. Phys. Lett. 78(13), 1850 (2001)
CrossRef
ADS
Google scholar
|
[13] |
J. E. Carey, C. H. Crouch, and E. Mazur, Femtosecond-laserassisted microstructuring of silicon surfaces, Opt. Photonics News 14(2), 32 (2003)
CrossRef
ADS
Google scholar
|
[14] |
J. E. Carey and E. Mazur, Femtosecond laser-assisted microstructuring of silicon for novel detector, sensing and display technologies, in: Lasers and Electro-Optics Society, 2003 (LEOS 2003). The 16th Annual Meeting of the IEEE, 481 (2003)
CrossRef
ADS
Google scholar
|
[15] |
B. K. Nayak, V. V. Iyengar, and M. C. Gupta, Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures, Prog. Photovolt. Res. Appl. 19(6), 631 (2011)
CrossRef
ADS
Google scholar
|
[16] |
Z. D. Chen, Q. Wu, M. Yang, B. Tang, J. H. Yao, R. A. Rupp, Y. A. Cao, and J. J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser Part. Beams 31(03), 539 (2013)
CrossRef
ADS
Google scholar
|
[17] |
L. Nesbit, Annealing characteristics of Si-rich SiO2 films, Appl. Phys. Lett. 46(1), 38 (1985)
CrossRef
ADS
Google scholar
|
[18] |
S. Kosowsky, P. S. Pershan, K. Krisch, J. Bevk, M. Green, D. Brasen, L. Feldman, and P. Roy, Evidence of annealing effects on a high-density Si/SiO2 interfacial layer, Appl. Phys. Lett. 70(23), 3119 (1997)
CrossRef
ADS
Google scholar
|
[19] |
G. Ghislotti, B. Nielsen, P. Asoka-Kumar, K. Lynn, A. Gambhir, L. Di Mauro, and C. Bottani, Effect of different preparation conditions on light emission from silicon implanted SiO2 layers, J. Appl. Phys. 79(11), 8660 (1996)
CrossRef
ADS
Google scholar
|
[20] |
C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, Visible luminescence from silicon surfaces microstructured in air, Appl. Phys. Lett. 81(11), 1999 (2002)
CrossRef
ADS
Google scholar
|
[21] |
J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes, Opt. Lett. 30(14), 1773 (2005)
CrossRef
ADS
Google scholar
|
[22] |
R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring, Appl. Opt. 45(35), 8825 (2006)
CrossRef
ADS
Google scholar
|
[23] |
T. G. Kim, J. M. Warrender, and M. J. Aziz, Strong subband-gap infrared absorption in silicon supersaturated with sulfur, Appl. Phys. Lett. 88(24), 241902 (2006)
CrossRef
ADS
Google scholar
|
[24] |
M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, Role of the background gas in the morphology and optical properties of laser-microstructured silicon, Chem. Mater. 17(14), 3582 (2005)
CrossRef
ADS
Google scholar
|
[25] |
B. R. Tull, M. T. Winkler, and E. Mazur, The role of diffusion in broadband infrared absorption in chalcogen-doped silicon, Appl. Phys. A, Mater. Sci. Process. 96(2), 327 (2009)
CrossRef
ADS
Google scholar
|
[26] |
B. K. Newman, M. J. Sher, E. Mazur, and T. Buonassisi, Reactivation of sub-bandgap absorption in chalcogenhyperdoped silicon, Appl. Phys. Lett. 98(25), 251905 (2011)
CrossRef
ADS
Google scholar
|
[27] |
M. J. Smith, Y. T. Lin, M. J. Sher, M. T. Winkler, E. Mazur, and S. Gradećak, Pressure-induced phase transformations during femtosecond-laser doping of silicon, J. Appl. Phys. 110(5), 053524 (2011)
CrossRef
ADS
Google scholar
|
[28] |
B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. J. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon, J. Appl. Phys. 114(13), 133507 (2013)
CrossRef
ADS
Google scholar
|
[29] |
H. Shao, Y. Li, J. Zhang, B. Y. Ning, W. Zhang, X. J. Ning, L. Zhao, and J. Zhuang, Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon, Europhys. Lett. 99(4), 46005 (2012)
CrossRef
ADS
Google scholar
|
[30] |
J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations, Appl. Surf. Sci. 245(1-4), 102 (2005)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |