Single-site surface-enhanced Raman scattering beyond spectroscopy

Mai Takase, Satoshi Yasuda, Kei Murakoshi

PDF(799 KB)
PDF(799 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 117803. DOI: 10.1007/s11467-015-0490-0
REVIEW ARTICLE
REVIEW ARTICLE

Single-site surface-enhanced Raman scattering beyond spectroscopy

Author information +
History +

Abstract

Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using multiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity measurement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful control of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.

Keywords

surface-enhanced Raman scattering / localized surface plasmon resonance / metal nanostructure / single-molecule observation / single-walled carbon nanotube / selection rule of electronic excitation

Cite this article

Download citation ▾
Mai Takase, Satoshi Yasuda, Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy. Front. Phys., 2016, 11(2): 117803 https://doi.org/10.1007/s11467-015-0490-0

References

[1]
N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Transitions between states: Photophysical processes, Modern molecular photochemistry of organic molecules, University Science Books, 2010, pp 109–167
[2]
A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking light-based technology, Science 348(6234), 516 (2015)
CrossRef ADS Google scholar
[3]
A. M. Kern, D. Zhang, M. Brecht, A. I. Chizhik, A. V. Failla, F. Wackenhut, and A. J. Meixner, Enhanced single-molecule spectroscopy in highly confined optical fields: From /2-Fabry˗Pérot resonators to plasmonic nano-antennas, Chem. Soc. Rev. 43(4), 1263 (2014)
CrossRef ADS Google scholar
[4]
H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, Toward plasmon-induced photoexcitation of molecules, J. Phys. Chem. Lett. 1(16), 2470 (2010)
CrossRef ADS Google scholar
[5]
G. S. Kedziora and G. C. Schatz, Calculating dipole and quadrupole polarizabilities relevant to surface enhanced Raman spectroscopy, Spectrochim. Acta Part A 55, 625 (1999)
CrossRef ADS Google scholar
[6]
L. E. C. Ru and P. G. Etchegoin, Transitions Between States: Photophysical Processes, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier Science, 2008
[7]
Y. S. Yamamoto, Y. Ozaki, and T. Itoh, Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering, J. Photochem. Photobiol. Photochem. Rev. 21, 81 (2014)
CrossRef ADS Google scholar
[8]
Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
CrossRef ADS Google scholar
[9]
J. R. Lombardi, R. L. Birke, T. H. Lu, and J. Xu, Charge-transfer theory of surface enhanced Raman-spectroscopy- Herzberg˗Teller contributions, J. Chem. Phys. 84(8), 4174 (1986)
CrossRef ADS Google scholar
[10]
R. L. Birke, V. Znamenskiy, and J. R. Lombardi, A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex, J. Chem. Phys. 132(21), 214707 (2010)
CrossRef ADS Google scholar
[11]
K. Kneipp, G. Harrison, S. Emory, and S. Nie, Single-molecule Raman spectroscopy: Fact or fiction? Chimia(Aarau) 53, 35 (1999)
[12]
P. G. Etchegoin and E. C. Le Ru, A perspective on single molecule SERS: Current status and future challenges, Phys. Chem. Chem. Phys. 10(40), 6079 (2008)
CrossRef ADS Google scholar
[13]
E. C. Le Ru, M. Meyer, and P. G. Etchegoin, Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique, J. Phys. Chem. B 110(4), 1944 (2006)
CrossRef ADS Google scholar
[14]
E. Blackie, E. C. Le Ru, M. Meyer, M. Timmer, B. Burkett, P. Northcote, and P. G. Etchegoin, Bi-analyte SERS with isotopically edited dyes, Phys. Chem. Chem. Phys. 2008, 10: 4147-53
CrossRef ADS Google scholar
[15]
E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules, J. Am. Chem. Soc. 131(40), 14466 (2009)
CrossRef ADS Google scholar
[16]
Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering, J. Am. Chem. Soc. 129(6), 1658 (2007)
CrossRef ADS Google scholar
[17]
S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: Theory and experiment, J. Am. Chem. Soc. 133(11), 4115 (2011)
CrossRef ADS Google scholar
[18]
K. Uosaki, H. Allen, and O. Hill, Absorption behaviour of 4,4′-bipyridyl at a gold/water interface and its role in the electron transfer reaction between cytochrome c and a gold electrode, J. Electroanal. Chem. Interfacial Electrochem. 122, 321 (1981)
CrossRef ADS Google scholar
[19]
D. Yang, D. Bizzotto, J. Lipkowski, B. Pettinger, and S. Mirwald, Electrochemical and second harmonic generation studies of 2,2'-bipyridine adsorption at the Au(111) electrode surface, J. Phys. Chem. 98(28), 7083 (1994)
CrossRef ADS Google scholar
[20]
H. Xu, J. Aizpurua, M. Käll, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62(3), 4318 (2000)
CrossRef ADS Google scholar
[21]
A. J. Meixner, D. Zeisel, M. A. Bopp, and G. Tarrach, Superresolution imaging and detection of fluorescence from single molecules by scanning near-field optical microscopy, Opt. Eng. 34(8), 2324 (1995)
CrossRef ADS Google scholar
[22]
B. Pettinger, P. Schambach, C. J. Villagomez and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, Ann. Rev. Phys. Chem., 63, 379 (2012)
CrossRef ADS Google scholar
[23]
J. Steidtner and B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution, Phys. Rev. Lett. 100(23), 236101 (2008)
CrossRef ADS Google scholar
[24]
B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement, Surf. Sci. 603(10-12), 1335 (2009)
CrossRef ADS Google scholar
[25]
R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)
CrossRef ADS Google scholar
[26]
S. Berweger, C. C. Neacsu, Y. Mao, H. Zhou, S. S. Wong, and M. B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy, Nat. Nanotechnol. 4(8), 496 (2009)
CrossRef ADS Google scholar
[27]
Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun. 2, 305 (2011)
CrossRef ADS Google scholar
[28]
T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure, Phys. Rev. Lett. 102(18), 186101 (2009)
CrossRef ADS Google scholar
[29]
J. M. Klingsporn, M. D. Sonntag, T. Seideman, and R. P. Van Duyne, Tip-enhanced Raman spectroscopy with picosecond pulses, J Phys Chem Lett 5(1), 106 (2014)
CrossRef ADS Google scholar
[30]
J. M. Atkin and M. B. Raschke, Techniques: Optical spectroscopy goes intramolecular, Nature 498(7452), 44 (2013)
CrossRef ADS Google scholar
[31]
Y. Fang, Z. Zhang, L. Chen, and M. Sun, Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy, Phys. Chem. Chem. Phys. 17(2), 783 (2015)
CrossRef ADS Google scholar
[32]
L. Meng, Z. Yang, J. Chen, and M. Sun, Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy, Sci. Rep. 5, 9240 (2015)
CrossRef ADS Google scholar
[33]
P. Z. El-Khoury, Y. Gong, P. Abellan, B. W. Arey, A. G. Joly, D. Hu, J. E. Evans, N. D. Browning, and W. P. Hess, Tip-enhanced Raman nanographs: Mapping topography and local electric fields, Nano Lett. 15(4), 2385 (2015)
CrossRef ADS Google scholar
[34]
S. Kano, T. Tada, and Y. Majima, Nanoparticle characterization based on STM and STS, Chem. Soc. Rev. 44(4), 970 (2015)
CrossRef ADS Google scholar
[35]
S. V. Aradhya and L. Venkataraman, Single-molecule junctions beyond electronic transport, Nat Nanotechnol 8(6), 399 (2013)
CrossRef ADS Google scholar
[36]
I. Bâldea, Electrochemical setup — a unique chance to simultaneously control orbital energies and vibrational properties of single-molecule junctions with unprecedented efficiency, Phys. Chem. Chem. Phys. 16(47), 25942 (2014)
CrossRef ADS Google scholar
[37]
I. Baldea, Single-molecule junctions based on bipyridine: Impact of an unusual reorganization on charge transport, J. Phys. Chem. C 118(16), 8676 (2014)
CrossRef ADS Google scholar
[38]
F. Lissel, F. Schwarz, O. Blacque, H. Riel, E. Lörtscher, K. Venkatesan, and H. Berke, Organometallic single-molecule electronics: Tuning electron transport through X(diphosphine)2FeC4Fe(diphosphine)2X building blocks by varying the Fe-X-Au anchoring scheme from coordinative to covalent, J. Am. Chem. Soc. 136(41), 14560 (2014)
CrossRef ADS Google scholar
[39]
C. Huang, A. V. Rudnev, W. Hong, and T. Wandlowski, Break junction under electrochemical gating: Testbed for single-molecule electronics, Chem. Soc. Rev. 44(4), 889 (2015)
CrossRef ADS Google scholar
[40]
R. Matsuhita, M. Horikawa, Y. Naitoh, H. Nakamura, and M. Kiguchi, Conductance and SERS measurement of benzenedithiol molecules bridging between Au electrodes, J. Phys. Chem. C 117(4), 1791 (2013)
CrossRef ADS Google scholar
[41]
J. H. Tian, B. Liu, X. Li, Z. L. Yang, B. Ren, S. T. Wu, N. Tao, and Z. Q. Tian, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method, J. Am. Chem. Soc. 128(46), 14748 (2006)
CrossRef ADS Google scholar
[42]
D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, Simultaneous measurements of electronic conduction and Raman response in molecular junctions, Nano Lett. 8(3), 919 (2008)
CrossRef ADS Google scholar
[43]
J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions, Nano Lett. 13(3), 1359 (2013)
CrossRef ADS Google scholar
[44]
T. Konishi, M. Kiguchi, M. Takase, F. Nagasawa, H. Nabika, K. Ikeda, K. Uosaki, K. Ueno, H. Misawa, and K. Murakoshi, Single molecule dynamics at a mechanically controllable break junction in solution at room temperature, J. Am. Chem. Soc. 135(3), 1009 (2013)
CrossRef ADS Google scholar
[45]
Y. Li, P. Doak, L. Kronik, J. B. Neaton, and D. Natelson, Voltage tuning of vibrational mode energies in single-molecule junctions, Proc. Natl. Acad. Sci. USA 111(4), 1282 (2014)
CrossRef ADS Google scholar
[46]
M. Kiguchi, T. Takahashi, M. Kanehara, T. Teranishi, and K. Murakoshi, Effect of end group position on the formation of single porphyrin molecular junction, J. Phys. Chem. C 113(21), 9014 (2009)
CrossRef ADS Google scholar
[47]
M. Kiguchi, S. Miura, T. Takahashi, K. Hara, M. Sawamura, and K. Murakoshi, Conductance of single 1,4-benzenediamine molecule bridging between Au and Pt electrodes, J. Phys. Chem. C 112(35), 13349 (2008)
CrossRef ADS Google scholar
[48]
M. Kiguchi, S. Miura, K. Hara, M. Sawamura, and K. Murakoshi, Conductance of single 1,4 di-substitued benzene molecules anchored to Pt electrodes, Appl. Phys. Lett. 91(5), 053110 (2007)
CrossRef ADS Google scholar
[49]
J. R. Lombardi, R. L. Birke, and G. Haran, Single molecule SERS spectral blinking and vibronic coupling, J. Phys. Chem. C 115(11), 4540 (2011)
CrossRef ADS Google scholar
[50]
P. K. Jain, D. Ghosh, R. Baer, E. Rabani, and A. P. Alivisatos, Near-field manipulation of spectroscopic selection rules on the nanoscale, Proc. Natl. Acad. Sci. USA 109(21), 8016 (2012)
CrossRef ADS Google scholar
[51]
A. M. Polubotko, Some anomalies of the SER spectra of symmetrical molecules adsorbed on transition metal substrates: Consideration by the dipole-quadrupole SERS theory, J. Raman Spectrosc. 36(6-7), 522 (2005)
CrossRef ADS Google scholar
[52]
D. V. Chulhai, and L. Jensen, Determining molecular orientation with surface-enhanced Raman scattering using inhomogenous electric fields, J. Phys. Chem. C 117, 19622 (2013)
CrossRef ADS Google scholar
[53]
E. J. Ayars, H. D. Hallen, and C. L. Jahncke, Electric field gradient effects in Raman spectroscopy, Phys. Rev. Lett. 85(19), 4180 (2000)
CrossRef ADS Google scholar
[54]
G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, Polarized raman spectroscopy on isolated single-wall carbon nanotubes, Phys. Rev. Lett. 85(25), 5436 (2000)
CrossRef ADS Google scholar
[55]
K. Kneipp, A. Jorio, H. Kneipp, S. D. M. Brown, K. Shafer, J. Motz, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters, Phys. Rev. B •••, 63 (2001)
[56]
A. Jorio, M. A. Pimenta, A. G. Souza Filho, G. G. Samsonidze, A. K. Swan, M. S. Unlü, B. B. Goldberg, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Resonance Raman spectra of carbon nanotubes by cross-polarized light, Phys. Rev. Lett. 90(10), 107403 (2003)
CrossRef ADS Google scholar
[57]
N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy, Chem. Phys. Lett. 376(1-2), 174 (2003)
CrossRef ADS Google scholar
[58]
A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90(9), 095503 (2003)
CrossRef ADS Google scholar
[59]
M. Takase, H. Nabika, S. Hoshina, M. Nara, K. Komeda, R. Shito, S. Yasuda, K. Murakoshi, and K. Murakoshi, Local thermal elevation probing of metal nanostructures during laser illumination utilizing surface-enhanced Raman scattering from a single-walled carbon nanotube, Phys. Chem. Chem. Phys. 15(12), 4270 (2013)
CrossRef ADS Google scholar
[60]
C. M. Aikens, L. R. Madison, and G. C. Schatz, The effect of field gradient on SERS, Nat. Photonics 7(7), 508 (2013)
CrossRef ADS Google scholar
[61]
S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities, Nano Lett. 14(4), 1762 (2014)
CrossRef ADS Google scholar
[62]
M. T. Trinh, M. Y. Sfeir, J. J. Choi, J. S. Owen, and X. Zhu, A hot electron-hole pair breaks the symmetry of a semiconductor quantum dot, Nano Lett. 13(12), 6091 (2013)
CrossRef ADS Google scholar
[63]
M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, Quantum plasmonics, Nat. Phys. 9(6), 329 (2013)
CrossRef ADS Google scholar
[64]
M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, Atomistic near-field nanoplasmonics: Reaching atomic-scale resolution in nanooptics, Nano Lett. 15(5), 3410 (2015)
CrossRef ADS Google scholar
[65]
K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics, Nature 491(7425), 574 (2012)
CrossRef ADS Google scholar
[66]
A. Manjavacas, F. J. García de Abajo, and P. Nordlander, Quantum plexcitonics: Strongly interacting plasmons and excitons, Nano Lett. 11(6), 2318 (2011)
CrossRef ADS Google scholar
[67]
P. Törmä and W. L. Barnes, Strong coupling between surface plasmon polaritons and emitters: A review, Rep. Prog. Phys. 78(1), 013901 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(799 KB)

Accesses

Citations

Detail

Sections
Recommended

/