Single-site surface-enhanced Raman scattering beyond spectroscopy
Mai Takase, Satoshi Yasuda, Kei Murakoshi
Single-site surface-enhanced Raman scattering beyond spectroscopy
Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using multiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity measurement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful control of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.
surface-enhanced Raman scattering / localized surface plasmon resonance / metal nanostructure / single-molecule observation / single-walled carbon nanotube / selection rule of electronic excitation
[1] |
N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Transitions between states: Photophysical processes, Modern molecular photochemistry of organic molecules, University Science Books, 2010, pp 109–167
|
[2] |
A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking light-based technology, Science 348(6234), 516 (2015)
CrossRef
ADS
Google scholar
|
[3] |
A. M. Kern, D. Zhang, M. Brecht, A. I. Chizhik, A. V. Failla, F. Wackenhut, and A. J. Meixner, Enhanced single-molecule spectroscopy in highly confined optical fields: From /2-Fabry˗Pérot resonators to plasmonic nano-antennas, Chem. Soc. Rev. 43(4), 1263 (2014)
CrossRef
ADS
Google scholar
|
[4] |
H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, Toward plasmon-induced photoexcitation of molecules, J. Phys. Chem. Lett. 1(16), 2470 (2010)
CrossRef
ADS
Google scholar
|
[5] |
G. S. Kedziora and G. C. Schatz, Calculating dipole and quadrupole polarizabilities relevant to surface enhanced Raman spectroscopy, Spectrochim. Acta Part A 55, 625 (1999)
CrossRef
ADS
Google scholar
|
[6] |
L. E. C. Ru and P. G. Etchegoin, Transitions Between States: Photophysical Processes, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier Science, 2008
|
[7] |
Y. S. Yamamoto, Y. Ozaki, and T. Itoh, Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering, J. Photochem. Photobiol. Photochem. Rev. 21, 81 (2014)
CrossRef
ADS
Google scholar
|
[8] |
Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
CrossRef
ADS
Google scholar
|
[9] |
J. R. Lombardi, R. L. Birke, T. H. Lu, and J. Xu, Charge-transfer theory of surface enhanced Raman-spectroscopy- Herzberg˗Teller contributions, J. Chem. Phys. 84(8), 4174 (1986)
CrossRef
ADS
Google scholar
|
[10] |
R. L. Birke, V. Znamenskiy, and J. R. Lombardi, A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex, J. Chem. Phys. 132(21), 214707 (2010)
CrossRef
ADS
Google scholar
|
[11] |
K. Kneipp, G. Harrison, S. Emory, and S. Nie, Single-molecule Raman spectroscopy: Fact or fiction? Chimia(Aarau) 53, 35 (1999)
|
[12] |
P. G. Etchegoin and E. C. Le Ru, A perspective on single molecule SERS: Current status and future challenges, Phys. Chem. Chem. Phys. 10(40), 6079 (2008)
CrossRef
ADS
Google scholar
|
[13] |
E. C. Le Ru, M. Meyer, and P. G. Etchegoin, Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique, J. Phys. Chem. B 110(4), 1944 (2006)
CrossRef
ADS
Google scholar
|
[14] |
E. Blackie, E. C. Le Ru, M. Meyer, M. Timmer, B. Burkett, P. Northcote, and P. G. Etchegoin, Bi-analyte SERS with isotopically edited dyes, Phys. Chem. Chem. Phys. 2008, 10: 4147-53
CrossRef
ADS
Google scholar
|
[15] |
E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules, J. Am. Chem. Soc. 131(40), 14466 (2009)
CrossRef
ADS
Google scholar
|
[16] |
Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering, J. Am. Chem. Soc. 129(6), 1658 (2007)
CrossRef
ADS
Google scholar
|
[17] |
S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: Theory and experiment, J. Am. Chem. Soc. 133(11), 4115 (2011)
CrossRef
ADS
Google scholar
|
[18] |
K. Uosaki, H. Allen, and O. Hill, Absorption behaviour of 4,4′-bipyridyl at a gold/water interface and its role in the electron transfer reaction between cytochrome c and a gold electrode, J. Electroanal. Chem. Interfacial Electrochem. 122, 321 (1981)
CrossRef
ADS
Google scholar
|
[19] |
D. Yang, D. Bizzotto, J. Lipkowski, B. Pettinger, and S. Mirwald, Electrochemical and second harmonic generation studies of 2,2'-bipyridine adsorption at the Au(111) electrode surface, J. Phys. Chem. 98(28), 7083 (1994)
CrossRef
ADS
Google scholar
|
[20] |
H. Xu, J. Aizpurua, M. Käll, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62(3), 4318 (2000)
CrossRef
ADS
Google scholar
|
[21] |
A. J. Meixner, D. Zeisel, M. A. Bopp, and G. Tarrach, Superresolution imaging and detection of fluorescence from single molecules by scanning near-field optical microscopy, Opt. Eng. 34(8), 2324 (1995)
CrossRef
ADS
Google scholar
|
[22] |
B. Pettinger, P. Schambach, C. J. Villagomez and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, Ann. Rev. Phys. Chem., 63, 379 (2012)
CrossRef
ADS
Google scholar
|
[23] |
J. Steidtner and B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution, Phys. Rev. Lett. 100(23), 236101 (2008)
CrossRef
ADS
Google scholar
|
[24] |
B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement, Surf. Sci. 603(10-12), 1335 (2009)
CrossRef
ADS
Google scholar
|
[25] |
R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)
CrossRef
ADS
Google scholar
|
[26] |
S. Berweger, C. C. Neacsu, Y. Mao, H. Zhou, S. S. Wong, and M. B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy, Nat. Nanotechnol. 4(8), 496 (2009)
CrossRef
ADS
Google scholar
|
[27] |
Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun. 2, 305 (2011)
CrossRef
ADS
Google scholar
|
[28] |
T. Ichimura, S. Fujii, P. Verma, T. Yano, Y. Inouye, and S. Kawata, Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure, Phys. Rev. Lett. 102(18), 186101 (2009)
CrossRef
ADS
Google scholar
|
[29] |
J. M. Klingsporn, M. D. Sonntag, T. Seideman, and R. P. Van Duyne, Tip-enhanced Raman spectroscopy with picosecond pulses, J Phys Chem Lett 5(1), 106 (2014)
CrossRef
ADS
Google scholar
|
[30] |
J. M. Atkin and M. B. Raschke, Techniques: Optical spectroscopy goes intramolecular, Nature 498(7452), 44 (2013)
CrossRef
ADS
Google scholar
|
[31] |
Y. Fang, Z. Zhang, L. Chen, and M. Sun, Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy, Phys. Chem. Chem. Phys. 17(2), 783 (2015)
CrossRef
ADS
Google scholar
|
[32] |
L. Meng, Z. Yang, J. Chen, and M. Sun, Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy, Sci. Rep. 5, 9240 (2015)
CrossRef
ADS
Google scholar
|
[33] |
P. Z. El-Khoury, Y. Gong, P. Abellan, B. W. Arey, A. G. Joly, D. Hu, J. E. Evans, N. D. Browning, and W. P. Hess, Tip-enhanced Raman nanographs: Mapping topography and local electric fields, Nano Lett. 15(4), 2385 (2015)
CrossRef
ADS
Google scholar
|
[34] |
S. Kano, T. Tada, and Y. Majima, Nanoparticle characterization based on STM and STS, Chem. Soc. Rev. 44(4), 970 (2015)
CrossRef
ADS
Google scholar
|
[35] |
S. V. Aradhya and L. Venkataraman, Single-molecule junctions beyond electronic transport, Nat Nanotechnol 8(6), 399 (2013)
CrossRef
ADS
Google scholar
|
[36] |
I. Bâldea, Electrochemical setup — a unique chance to simultaneously control orbital energies and vibrational properties of single-molecule junctions with unprecedented efficiency, Phys. Chem. Chem. Phys. 16(47), 25942 (2014)
CrossRef
ADS
Google scholar
|
[37] |
I. Baldea, Single-molecule junctions based on bipyridine: Impact of an unusual reorganization on charge transport, J. Phys. Chem. C 118(16), 8676 (2014)
CrossRef
ADS
Google scholar
|
[38] |
F. Lissel, F. Schwarz, O. Blacque, H. Riel, E. Lörtscher, K. Venkatesan, and H. Berke, Organometallic single-molecule electronics: Tuning electron transport through X(diphosphine)2FeC4Fe(diphosphine)2X building blocks by varying the Fe-X-Au anchoring scheme from coordinative to covalent, J. Am. Chem. Soc. 136(41), 14560 (2014)
CrossRef
ADS
Google scholar
|
[39] |
C. Huang, A. V. Rudnev, W. Hong, and T. Wandlowski, Break junction under electrochemical gating: Testbed for single-molecule electronics, Chem. Soc. Rev. 44(4), 889 (2015)
CrossRef
ADS
Google scholar
|
[40] |
R. Matsuhita, M. Horikawa, Y. Naitoh, H. Nakamura, and M. Kiguchi, Conductance and SERS measurement of benzenedithiol molecules bridging between Au electrodes, J. Phys. Chem. C 117(4), 1791 (2013)
CrossRef
ADS
Google scholar
|
[41] |
J. H. Tian, B. Liu, X. Li, Z. L. Yang, B. Ren, S. T. Wu, N. Tao, and Z. Q. Tian, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method, J. Am. Chem. Soc. 128(46), 14748 (2006)
CrossRef
ADS
Google scholar
|
[42] |
D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, Simultaneous measurements of electronic conduction and Raman response in molecular junctions, Nano Lett. 8(3), 919 (2008)
CrossRef
ADS
Google scholar
|
[43] |
J. B. Herzog, M. W. Knight, Y. Li, K. M. Evans, N. J. Halas, and D. Natelson, Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions, Nano Lett. 13(3), 1359 (2013)
CrossRef
ADS
Google scholar
|
[44] |
T. Konishi, M. Kiguchi, M. Takase, F. Nagasawa, H. Nabika, K. Ikeda, K. Uosaki, K. Ueno, H. Misawa, and K. Murakoshi, Single molecule dynamics at a mechanically controllable break junction in solution at room temperature, J. Am. Chem. Soc. 135(3), 1009 (2013)
CrossRef
ADS
Google scholar
|
[45] |
Y. Li, P. Doak, L. Kronik, J. B. Neaton, and D. Natelson, Voltage tuning of vibrational mode energies in single-molecule junctions, Proc. Natl. Acad. Sci. USA 111(4), 1282 (2014)
CrossRef
ADS
Google scholar
|
[46] |
M. Kiguchi, T. Takahashi, M. Kanehara, T. Teranishi, and K. Murakoshi, Effect of end group position on the formation of single porphyrin molecular junction, J. Phys. Chem. C 113(21), 9014 (2009)
CrossRef
ADS
Google scholar
|
[47] |
M. Kiguchi, S. Miura, T. Takahashi, K. Hara, M. Sawamura, and K. Murakoshi, Conductance of single 1,4-benzenediamine molecule bridging between Au and Pt electrodes, J. Phys. Chem. C 112(35), 13349 (2008)
CrossRef
ADS
Google scholar
|
[48] |
M. Kiguchi, S. Miura, K. Hara, M. Sawamura, and K. Murakoshi, Conductance of single 1,4 di-substitued benzene molecules anchored to Pt electrodes, Appl. Phys. Lett. 91(5), 053110 (2007)
CrossRef
ADS
Google scholar
|
[49] |
J. R. Lombardi, R. L. Birke, and G. Haran, Single molecule SERS spectral blinking and vibronic coupling, J. Phys. Chem. C 115(11), 4540 (2011)
CrossRef
ADS
Google scholar
|
[50] |
P. K. Jain, D. Ghosh, R. Baer, E. Rabani, and A. P. Alivisatos, Near-field manipulation of spectroscopic selection rules on the nanoscale, Proc. Natl. Acad. Sci. USA 109(21), 8016 (2012)
CrossRef
ADS
Google scholar
|
[51] |
A. M. Polubotko, Some anomalies of the SER spectra of symmetrical molecules adsorbed on transition metal substrates: Consideration by the dipole-quadrupole SERS theory, J. Raman Spectrosc. 36(6-7), 522 (2005)
CrossRef
ADS
Google scholar
|
[52] |
D. V. Chulhai, and L. Jensen, Determining molecular orientation with surface-enhanced Raman scattering using inhomogenous electric fields, J. Phys. Chem. C 117, 19622 (2013)
CrossRef
ADS
Google scholar
|
[53] |
E. J. Ayars, H. D. Hallen, and C. L. Jahncke, Electric field gradient effects in Raman spectroscopy, Phys. Rev. Lett. 85(19), 4180 (2000)
CrossRef
ADS
Google scholar
|
[54] |
G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, Polarized raman spectroscopy on isolated single-wall carbon nanotubes, Phys. Rev. Lett. 85(25), 5436 (2000)
CrossRef
ADS
Google scholar
|
[55] |
K. Kneipp, A. Jorio, H. Kneipp, S. D. M. Brown, K. Shafer, J. Motz, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters, Phys. Rev. B •••, 63 (2001)
|
[56] |
A. Jorio, M. A. Pimenta, A. G. Souza Filho, G. G. Samsonidze, A. K. Swan, M. S. Unlü, B. B. Goldberg, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Resonance Raman spectra of carbon nanotubes by cross-polarized light, Phys. Rev. Lett. 90(10), 107403 (2003)
CrossRef
ADS
Google scholar
|
[57] |
N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy, Chem. Phys. Lett. 376(1-2), 174 (2003)
CrossRef
ADS
Google scholar
|
[58] |
A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90(9), 095503 (2003)
CrossRef
ADS
Google scholar
|
[59] |
M. Takase, H. Nabika, S. Hoshina, M. Nara, K. Komeda, R. Shito, S. Yasuda, K. Murakoshi, and K. Murakoshi, Local thermal elevation probing of metal nanostructures during laser illumination utilizing surface-enhanced Raman scattering from a single-walled carbon nanotube, Phys. Chem. Chem. Phys. 15(12), 4270 (2013)
CrossRef
ADS
Google scholar
|
[60] |
C. M. Aikens, L. R. Madison, and G. C. Schatz, The effect of field gradient on SERS, Nat. Photonics 7(7), 508 (2013)
CrossRef
ADS
Google scholar
|
[61] |
S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities, Nano Lett. 14(4), 1762 (2014)
CrossRef
ADS
Google scholar
|
[62] |
M. T. Trinh, M. Y. Sfeir, J. J. Choi, J. S. Owen, and X. Zhu, A hot electron-hole pair breaks the symmetry of a semiconductor quantum dot, Nano Lett. 13(12), 6091 (2013)
CrossRef
ADS
Google scholar
|
[63] |
M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, Quantum plasmonics, Nat. Phys. 9(6), 329 (2013)
CrossRef
ADS
Google scholar
|
[64] |
M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal, Atomistic near-field nanoplasmonics: Reaching atomic-scale resolution in nanooptics, Nano Lett. 15(5), 3410 (2015)
CrossRef
ADS
Google scholar
|
[65] |
K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics, Nature 491(7425), 574 (2012)
CrossRef
ADS
Google scholar
|
[66] |
A. Manjavacas, F. J. García de Abajo, and P. Nordlander, Quantum plexcitonics: Strongly interacting plasmons and excitons, Nano Lett. 11(6), 2318 (2011)
CrossRef
ADS
Google scholar
|
[67] |
P. Törmä and W. L. Barnes, Strong coupling between surface plasmon polaritons and emitters: A review, Rep. Prog. Phys. 78(1), 013901 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |