Water and lysozyme: Some results from the bending and stretching vibrational modes

Francesco Mallamace, Carmelo Corsaro, Domenico Mallamace, Cirino Vasi, Nicola Cicero, H. Eugene Stanley

PDF(302 KB)
PDF(302 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 106105. DOI: 10.1007/s11467-015-0488-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Water and lysozyme: Some results from the bending and stretching vibrational modes

Author information +
History +

Abstract

The dynamic or glass transition in biomolecules is important to their functioning. Also essential is the transition between the protein native state and the unfolding process. To better understand these transitions, we use Fourier transform infrared spectroscopy to study the vibrational bending and stretching modes of hydrated lysozymes across a wide temperature range. We find that these transitions are triggered by the strong hydrogen bond coupling between the protein and hydration water. More precisely, we demonstrate that in both cases the water properties dominate the evolution of the system. We find that two characteristic temperatures are relevant: in the supercooled regime of confined water, the fragile-to-strong dynamic transition occurs at TL, and in the stable liquid phase, T*315±5K characterizes the behavior of both isothermal compressibility KT (T,P) and the coefficient of thermal expansion aP (T,P).

Keywords

protein unfolding / hydration water / infrared spectroscopy

Cite this article

Download citation ▾
Francesco Mallamace, Carmelo Corsaro, Domenico Mallamace, Cirino Vasi, Nicola Cicero, H. Eugene Stanley. Water and lysozyme: Some results from the bending and stretching vibrational modes. Front. Phys., 2015, 10(5): 106105 https://doi.org/10.1007/s11467-015-0488-7

References

[1]
P. G. Debenedetti and H. E. Stanley, Supercooled and glassy water, Phys. Today 56(6), 40 (2003)
CrossRef ADS Google scholar
[2]
F. Mallamace, P. Baglioni, C. Corsaro, J. Spooren, H. E. Stanley, and S. H. Chen, Transport properties of supercooled confined water, Riv. Nuovo Cim. 34, 253 (2011)
[3]
G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Berlin: Springer-Verlag, 1991
CrossRef ADS Google scholar
[4]
Y. Levy and J. N. Onuchic, Water mediation in protein folding and molecular recognition, Annu. Rev. Biophys. Biomol. Struct. 35(1), 389 (2006)
CrossRef ADS Google scholar
[5]
F. Mallamace, P. Baglioni, C. Corsaro, S. H. Chen, D. Mallamace, C. Vasi, and H. E. Stanley, The influence of water on protein properties, J. Chem. Phys. 141(16), 165104 (2014)
CrossRef ADS Google scholar
[6]
S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, The violation of the Stokes−Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA 103(35), 12974 (2006)
CrossRef ADS Google scholar
[7]
F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA 104(2), 424 (2007)
CrossRef ADS Google scholar
[8]
L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, Appearance of a fractional Stokes− Einstein relation in water and a structural interpretation of its onset, Nat. Phys. 5(8), 565 (2009)
CrossRef ADS Google scholar
[9]
F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Transport properties of glassforming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA 107(52), 22457 (2010)
CrossRef ADS Google scholar
[10]
S. Yip and M. P. Short, Multiscale materials modeling at the mesoscale, Nat. Mater. 12(9), 774 (2013)
CrossRef ADS Google scholar
[11]
F. Mallamace, C. Corsaro, H. E. Stanley, and S. H. Chen, The role of the dynamic crossover temperature and the arrest in glass-forming fluids, Eur. Phys. J. E 34(9), 94 (2011)
CrossRef ADS Google scholar
[12]
J. C. Martinez-Garcia, J. Martinez-Garcia, S. J. Rzoska, and J. Hulliger, The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis, J. Chem. Phys. 137(6), 064501 (2012)
CrossRef ADS Google scholar
[13]
J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106(47), 19780 (2009)
CrossRef ADS Google scholar
[14]
K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, Spatially inhomogeneous bimodal inherent structure of simulated liquid water, Phys. Chem. Chem. Phys. 13(44), 19918 (2011)
CrossRef ADS Google scholar
[15]
P. Kumar, K. T. Wikfeldt, D. Schlesinger, L. G. M. Pettersson, and H. E. Stanley, The Boson peak in supercooled water, Sci. Rep. 3, 1980 (2013)
CrossRef ADS Google scholar
[16]
S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, and F. Mallamace, Evidence of dynamic crossover phenomena in water and other glass-forming liquids: Experiments, MD simulations and theory, J. Phys.: Condens. Matter 21(50), 504102 (2009)
CrossRef ADS Google scholar
[17]
G. Schiró, F. Natali, and A. Cupane, Physical origin of anharmonic dynamics in proteins: New insights from resolution-dependent neutron scattering on homomeric polypeptides, Phys. Rev. Lett. 109(12), 128102 (2012)
CrossRef ADS Google scholar
[18]
F. H. Stillinger, A topographic view of supercooled liquids and glass formation, Science 267(5206), 1935 (1995)
CrossRef ADS Google scholar
[19]
S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA 103(24), 9012 (2006)
CrossRef ADS Google scholar
[20]
X. Q. Chu, A. Faraone, C. Kim, E. Fratini, P. Baglioni, J. B. Leao, and S. H. Chen, Proteins remain soft at lower temperatures under pressure, J. Phys. Chem. B 113(15), 5001 (2009)
CrossRef ADS Google scholar
[21]
G. Caliskan, R. M. Briber, D. Thirumalai, V. Garcia-Sakai, S. A. Woodson, and A. P. Sokolov, Dynamic transition in tRNA is solvent induced, J. Am. Chem. Soc. 128(1), 32 (2006)
CrossRef ADS Google scholar
[22]
M. Lagi, X. Q. Chu, C. Kim, F. Mallamace, P. Baglioni, and S. H. Chen, The low-temperature dynamic crossover phenomenon in protein hydration water: Simulations vs. experiments, J. Phys. Chem. B 112(6), 1571 (2008)
CrossRef ADS Google scholar
[23]
M. Fomina, G. Schirò, and A. Cupane, Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy, Biophys. Chem. 185, 25 (2014)
CrossRef ADS Google scholar
[24]
I. E. T. Iben, D. Braunstein, W. Doster, H. Frauenfelder, M. K. Hong, J. B. Johnson, S. Luck, P. Ormos, A. Schulte, P. J. Steinbach, A. H. Xie, and R. D. Young, Glassy behavior of a protein, Phys. Rev. Lett. 62(16), 1916 (1989)
CrossRef ADS Google scholar
[25]
F. Parak and E. W. Knapp, A consistent picture of protein dynamics, Proc. Natl. Acad. Sci. USA 81(22), 7088 (1984)
CrossRef ADS Google scholar
[26]
G. Zaccai, How soft is a protein? Science 288(5471), 1604 (2000)
CrossRef ADS Google scholar
[27]
B. F. Rasmussen, A. M. Stock, D. Ringe, and G. A. Petsko, Crystalline ribonuclease A loses function below the dynamical transition at 220 K, Nature 357(6377), 423 (1992)
CrossRef ADS Google scholar
[28]
J. A. Rupley and G. Careri, Protein hydration and function, Adv. Protein Chem. 41, 37 (1991)
CrossRef ADS Google scholar
[29]
M. Ferrand, A. J. Dianoux, W. Petry, and G. Zaccai, Thermal motions and function of bacteriorhodopsin in purple membranes: Effects of temperature and hydration studied by neutron scattering, Proc. Natl. Acad. Sci. USA 90(20), 9668 (1993)
CrossRef ADS Google scholar
[30]
G. Careri, Cooperative charge fluctuations by migrating protons in globular proteins, Prog. Biophys. Mol. Biol. 70(3), 223 (1998)
CrossRef ADS Google scholar
[31]
Q. Li, J. Song, F. Besenbacher, and M. Dong, Twodimensional material confined water, Acc. Chem. Res. 48(1), 119 (2015)
CrossRef ADS Google scholar
[32]
S. O. Diallo, E. Mamontov, W. Nobuo, S. Inagaki, and Y. Fukushima, Enhanced translational diffusion of confined water under electric field, Phys. Rev. E 86(2), 021506 (2012)
CrossRef ADS Google scholar
[33]
L. Pauling, R. B. Corey, and H. R. Branson, The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37(4), 205 (1951)
CrossRef ADS Google scholar
[34]
D. Russo, G. L. Hura, and J. R. D. Copley, Effects of hydration water on protein methyl group dynamics in solution, Phys. Rev. E 75(4), 040902 (2007)
CrossRef ADS Google scholar
[35]
M. Tarek and D. J. Tobias, Role of protein-water hydrogen bond dynamics in the protein dynamical transition, Phys. Rev. Lett. 88(13), 138101 (2002)
CrossRef ADS Google scholar
[36]
P. W. Bridgman, Water, in the liquid and five solid forms, under pressure, Proc. Am. Acad. Arts Sci. 47(13), 441 (1912)
CrossRef ADS Google scholar
[37]
T. Grindley and J. E. Lind, PVT properties of water and mercury, J. Chem. Phys. 54(9), 3983 (1971)
CrossRef ADS Google scholar
[38]
O. Mishima, Volume of supercooled water under pressure and the liquid-liquid critical point, J. Chem. Phys. 133(14), 144503 (2010)
CrossRef ADS Google scholar
[39]
F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)
CrossRef ADS Google scholar
[40]
F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Farad. Disc. 167, 95 (2013)
[41]
J. H. Simpson and H. Y. Carr, Diffusion and nuclear spin relaxation in water, Phys. Rev. 111(5), 1201 (1958)
CrossRef ADS Google scholar
[42]
A. Barth and C. Zscherp, What vibrations tell us about proteins, Q. Rev. Biophys. 35(4), 369 (2002)
CrossRef ADS Google scholar
[43]
J. T. Pelton and L. R. McLean, Spectroscopic methods for analysis of protein secondary structure, Anal. Biochem. 277(2), 167 (2000)
CrossRef ADS Google scholar
[44]
G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, Temperature dependence of the low- and highfrequency Raman scattering from liquid water, J. Chem. Phys. 85(12), 6970 (1986)
CrossRef ADS Google scholar
[45]
S. Adams, A. M. Higgins, and R. A. L. Jones, Surfacemediated folding and misfolding of proteins at lipid/water interfaces, Langmuir 18(12), 4854 (2002)
CrossRef ADS Google scholar
[46]
E. S. Eberhardt and R. T. Raines, Amide-amide and amidewater hydrogen bonds: Implications for protein folding and stability, J. Am. Chem. Soc. 116(5), 2149 (1994)
CrossRef ADS Google scholar
[47]
S. T. R. Walsh, R. P. Cheng, W. W. Wright, D. O. V. Alonso, V. Daggett, J. M. Vanderkooi, and W. F. DeGrado, The hydration of amides in helices; a comprehensive picture from molecular dynamics, IR, and NMR, Protein Sci. 12(3), 520 (2003)
CrossRef ADS Google scholar
[48]
M. Sundaralingam and Y. C. Serkharudu, Water-inserted alpha-helical segments implicate reverse turns as folding intermediates, Science 244(4910), 1333 (1989)
CrossRef ADS Google scholar
[49]
R. Gilmanshin, S. Williams, R. H. Callender, W. H. Woodruff, and R. B. Dyer, Fast events in protein folding: Relaxation dynamics of secondary and tertiary structure in native apomyoglobin, Proc. Natl. Acad. Sci. USA 94(8), 3709 (1997)
CrossRef ADS Google scholar
[50]
F. Mallamace, S. H. Chen, M. Broccio, C. Corsaro, V. Crupi, D. Majolino, V. Venuti, P. Baglioni, E. Fratini, C. Vannucci, and H. E. Stanley, Role of the solvent in the dynamical transitions of proteins: The case of the lysozyme-water system, J. Chem. Phys. 127(4), 045104 (2007)
CrossRef ADS Google scholar
[51]
O. F. A. Larsen and S. Woutersen, Vibrational relaxation of the H2O bending mode in liquid water, J. Chem. Phys. 121(24), 12143 (2004)
CrossRef ADS Google scholar
[52]
M. G. Sceats and S. A. Rice, In: F. Franks (Ed.), Water − a Comprehensive Treatise, New York: Plenum Press, pp 83−214, 1982
[53]
M. D. Joesten and L. J. Schaad, Hydrogen Bonding, New York: Marcel Dekker, 1985
[54]
F. Mallamace, , to be published

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(302 KB)

Accesses

Citations

Detail

Sections
Recommended

/