Dynamical changes in hydration water accompanying lysozyme thermal denaturation

Francesco Mallamace, Carmelo Corsaro, Domenico Mallamace, Nicola Cicero, Sebastiano Vasi, Giacomo Dugo, H. Eugene Stanley

PDF(292 KB)
PDF(292 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (5) : 106104. DOI: 10.1007/s11467-015-0486-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamical changes in hydration water accompanying lysozyme thermal denaturation

Author information +
History +

Abstract

We study the dynamics of the first hydration shell of lysozyme to determine the role of hydration water that accompanies lysozyme thermal denaturation. We use nuclear magnetic resonance spectroscopy to investigate both the translational and rotational contributions. Data on proton self-diffusion and reorentational correlation time indicate that the kinetics of the lysozyme folding/unfolding process is controlled by the dynamics of the water molecules in the first hydration shell. When the hydration water dynamics change, because of the weakening of the hydrogen bond network, the three-dimensional structure of the lysozyme is lost and denaturation is triggered. Our data indicates that at temperatures above approximately 315 K, water behaves as a simple liquid and is no longer a good solvent.

Keywords

lysozyme unfolding / hydration water / NMR / correlation time / solvent dynamics

Cite this article

Download citation ▾
Francesco Mallamace, Carmelo Corsaro, Domenico Mallamace, Nicola Cicero, Sebastiano Vasi, Giacomo Dugo, H. Eugene Stanley. Dynamical changes in hydration water accompanying lysozyme thermal denaturation. Front. Phys., 2015, 10(5): 106104 https://doi.org/10.1007/s11467-015-0486-9

References

[1]
G. R. Bowman and V. S. Pande, Protein folded states are kinetic hubs, Proc. Natl. Acad. Sci. USA 107, 10890 (2010)
CrossRef ADS Google scholar
[2]
G. D. Rose, P. J. Fleming, J. R. Banavar, and A. Maritan, A backbone-based theory of protein folding, Proc. Natl. Acad. Sci. USA 103(45), 16623 (2006)
CrossRef ADS Google scholar
[3]
M. Karplus, Behind the folding funnel diagram, Nat. Chem. Biol. 7, 401 (2011)
CrossRef ADS Google scholar
[4]
P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108, 74 (2008)
CrossRef ADS Google scholar
[5]
J. A. Rupley, P. H. Yang, and G. Tollin, Thermodynamic and related studies of water interacting with proteins in water in polymers, Vol. 127, edited by S. P. Rowland, ACS Symposium Series, 1980, p. 111
[6]
R. B. Gregory, Protein Solvent Interaction, New York: Marcel Dekker, 1995
[7]
L. Comez, S. Perticaroli, M. Paolantoni, P. Sassi, S. Corezzi, A. Morresi, and D. Fioretto, Concentration dependence of hydration water in a model peptide, Phys. Chem. Chem. Phys. 16, 12433 (2014)
CrossRef ADS Google scholar
[8]
J. A. Rupley and G. Careri, Protein hydration and function, Adv. Protein Chem. 41, 37 (1991)
CrossRef ADS Google scholar
[9]
V. Helms, Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules, ChemPhysChem 8, 23 (2007)
CrossRef ADS Google scholar
[10]
G. Schirò, M. Fomina, and A. Cupane, Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water, J. Chem. Phys. 139, 121102 (2013)
CrossRef ADS Google scholar
[11]
K. L. Ngai, S. Capaccioli, and N. Shinyashiki, The protein glass transition and the role of the solvent, J Phys Chem B 112(12), 3826 (2008)
CrossRef ADS Google scholar
[12]
K. L. Ngai, S. Capaccioli, and A. Paciaroni, Nature of the water specific relaxation in hydrated proteins and aqueous mixtures, Chem. Phys. 424, 37 (2013)
CrossRef ADS Google scholar
[13]
S.-H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA 103, 9012 (2006)
CrossRef ADS Google scholar
[14]
F. Mallamace, S.-H. Chen, M. Broccio, C. Corsaro, V. Crupi, , Role of the solvent in the dynamical transitions of proteins: The case of the lysozyme-water system, J. Chem. Phys. 127, 045104 (2007)
CrossRef ADS Google scholar
[15]
F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, , Dynamical crossover and breakdown of the Stokes–Einstein relation in confined water and in Methanol–Diluted bulk water, J. Phys. Chem. B 114(5), 1870 (2010)
CrossRef ADS Google scholar
[16]
Y. Zhang, M. Lagi, D. Liu, F. Mallamace, E. Fratini, , Observation of high-temperature dynamic crossover in protein hydration water and its relation to reversible denaturation of lysozyme, J. Chem. Phys. 130, 135101 (2009)
CrossRef ADS Google scholar
[17]
M. Lagi, X. Chu, C. Kim, F. Mallamace, P. Baglioni, , The low-temperature dynamic crossover phenomenon in protein hydration water: Simulations vs. experiments, J. Phys. Chem. B 112(6), 1571 (2008)
CrossRef ADS Google scholar
[18]
P. Kumar, Z. Yan, L. Xu, M. G. Mazza, S. V. Buldyrev, , Glass transition in biomolecules and the liquid-liquid critical point of water, Phys. Rev. Lett. 97, 177802 (2006)
CrossRef ADS Google scholar
[19]
S.-H. Chen, Y. Zhang, M. Lagi, S.-H. Chong, P. Baglioni, and F. Mallamace, Evidence of dynamic crossover phenomena in water and other glass-forming liquids: Experiments, MD simulations and theory, J. Phys.: Condens. Matter 21, 504102 (2009)
CrossRef ADS Google scholar
[20]
F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, L. Liu, C.-Y. Mou, and S.-H. Chen, Dynamical properties of confined supercooled water: an NMR study, J. Phys.: Condens. Matter 18, S2285 (2006)
CrossRef ADS Google scholar
[21]
W. Doster, S. Cusak, and W. Petry, Dynamical transition of myoglobin revealed by inelastic neutron scattering, Nature 337, 754 (1989)
CrossRef ADS Google scholar
[22]
W. Doster, The dynamical transition of proteins, concepts and misconceptions, Eur. Biophys. J. 37, 591 (2008)
CrossRef ADS Google scholar
[23]
W. Doster, S. Busch, A. M. Gaspar, M.-S. Appavou, J. Wuttke, and H. Scheer, Dynamical transition of proteinhydration water, Phys. Rev. Lett. 104, 098101 (2010)
CrossRef ADS Google scholar
[24]
S. Khodadadi, S. Pawlus, and A. P. Sokolov, Influence of hydration on protein dynamics: Combining dielectric and neutron scattering spectroscopy data, J. Phys. Chem. B 112, 14273 (2008)
CrossRef ADS Google scholar
[25]
S. Khodadadi, S. Pawlus, J. H. Roh, V. Garcia-Sakai, E. Mamontov, and A. P. Sokolov, The origin of the dynamic transition in proteins, J. Chem. Phys. 128, 195106 (2008)
CrossRef ADS Google scholar
[26]
G. Schirò, F. Natali, and A. Cupane, Physical origin of anharmonic dynamics in proteins: New insights from resolution-dependent neutron scattering on homomeric polypeptides, Phys. Rev. Lett. 109, 128102 (2012)
CrossRef ADS Google scholar
[27]
F. Mallamace, P. Baglioni, C. Corsaro, S.-H. Chen, D. Mallamace, C. Vasi, and H. E. Stanley, The influence of water on protein properties, J. Chem. Phys. 141, 165104 (2014)
CrossRef ADS Google scholar
[28]
F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H. E. Stanley, and S.-H. Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142, 215103 (2015)
CrossRef ADS Google scholar
[29]
F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, and H. E. Stanley, Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141, 18C504 (2014)
[30]
F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, and G. Dugo, The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques, Computational and Structural Biotechnology Journal 13, 33 (2015)
CrossRef ADS Google scholar
[31]
F. Mallamace, C. Corsaro, P. Baglioni, E. Fratini, and S.-H. Chen, The dynamical crossover phenomenon in bulk water, confined water and protein hydration water, J. Phys.: Condens. Matter 24, 064103 (2012)
CrossRef ADS Google scholar
[32]
F. Mallamace, S.-H. Chen, Y. Liu, L. Lobry, and N. Micali, Percolation and viscoelasticity of triblock copolymer micellar solutions, Physica A: Statistical Mechanics and its Applications 266, 123 (1999)
[33]
D. Russo, G. Hura, and T. Head-Gordon, Hydration dynamics near a model protein surface, Biophys. J. 86, 1852 (2004)
CrossRef ADS Google scholar
[34]
A. Ben-Naim, The role of hydrogen bonds in protein folding and protein association, J. Phys. Chem. 95, 1437 (1991)
CrossRef ADS Google scholar
[35]
V. Kocherbitov, J. Latynis, A. Misiūnas, J. Barauskas, and G. Niaura, Hydration of lysozyme studied by raman rpectroscopy, J. Phys. Chem. B 117, 4981 (2013)
CrossRef ADS Google scholar
[36]
G. Zaccai, How soft is a protein? A protein dynamics force constant measured by neutron scattering, Science 288, 1604 (2000)
CrossRef ADS Google scholar
[37]
P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Parak, Slaving: solvent fluctuations dominate protein dynamics and functions, Proc. Natl. Acad. Sci. USA 99, 16047 (2002)
CrossRef ADS Google scholar
[38]
H. Frauenfelder, P. W. Fenimore, and R. D. Young, Protein dynamics and function: Insights from the energy landscape and solvent slaving, IUBMB Life 59, 506 (2007)
CrossRef ADS Google scholar
[39]
F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)
CrossRef ADS Google scholar
[40]
F. Chiti and C. M. Dobson, Amyloid formation by globular proteins under native conditions, Nat. Chem. Biol. 5, 15 (2009)
CrossRef ADS Google scholar
[41]
D. J. Selkoe, Folding proteins in fatal ways, Nature 426, 900 (2003)
CrossRef ADS Google scholar
[42]
G. Salvetti, E. Tombari, L. Mikheeva, and G. P. Johari, The endothermic effects during denaturation of lysozyme by temperature modulated calorimetry and an intermediate reaction equilibrium, J. Phys. Chem. B 106, 6081 (2002)
CrossRef ADS Google scholar
[43]
F. Mallamace, C. Corsaro, D. Mallamace, P. Baglioni, H. E. Stanley, and S.-H. Chen, A possible role of water in the protein folding process, J. Phys. Chem. B 115, 14280 (2011)
CrossRef ADS Google scholar
[44]
D. Mallamace, C. Corsaro, C. Vasi, S. Vasi, G. Dugo, and F. Mallamace, The protein irreversible denaturation studied by means of the bending vibrational mode, Physica A: Statistical Mechanics and its Applications 412, 39 (2014)
[45]
F. Sterpone, G. Stirnemann, and D. Laage, Magnitude and molecular origin of water slowdown next to a protein, J. Am. Chem. Soc. 134, 4116 (2012)
CrossRef ADS Google scholar
[46]
C. Mattea, J. Qvist, and B. Halle, Dynamics at the proteinwater interface from 17O spin relaxation in deeply supercooled solutions, Biophys. J. 95, 2951 (2008)
CrossRef ADS Google scholar
[47]
E. Dubouè-Dijon, A. C. Fogarty, and D. Laage, Temperature dependence of hydrophobic hydration dynamics: From retardation to acceleration, J. Phys. Chem. B 118, 1574 (2014)
CrossRef ADS Google scholar
[48]
S. Pronk, E. Lindahl, and P. M. Kasson, Dynamic heterogeneity controls diffusion and viscosity near biological interfaces, Nature Communications 5, 3034 (2014)
CrossRef ADS Google scholar
[49]
A. C. Fogarty and Damien Laage, Water dynamics in protein hydration shells: The molecular origins of the dynamical perturbation, J. Phys. Chem. B 118, 7715 (2014)
CrossRef ADS Google scholar
[50]
W. S. Price, Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion (Part II): Experimental aspects, Concepts Magn. Reson. 10, 197 (1998)
CrossRef ADS Google scholar
[51]
A. Abragam, The Principles of Nuclear Magnetism, Oxford, UK: Oxford, 1961
[52]
S. Perticaroli, L. Comez, P. Sassi, M. Paolantoni, S. Corezzi, S. Caponi, A. Morresi, and D. Fioretto, Hydration and aggregation of lysozyme by extended frequency range depolarized light scattering, Journal of Non-Crystalline Solids 407, 472 (2015)
CrossRef ADS Google scholar
[53]
B. Jana, S. Pal, and B. Bagchi, Hydration dynamics of protein molecules in aqueous solution: Unity among diversity, J. Chem. Sci. 124(1), 317 (2012)
CrossRef ADS Google scholar
[54]
A. S. Parmar and M. Muschol, Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions, Biophysical Journal 97, 590 (2009)
CrossRef ADS Google scholar
[55]
A. Bizzarri, S. Cannistraro, Molecular dynamics of water at the protein-solvent interface, J. Phys. Chem. B 106, 6617 (2002)
CrossRef ADS Google scholar
[56]
W. S. Price, H. Ide, and Y. Arata, Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements, J. Phys. Chem. A 103, 448 (1999)
CrossRef ADS Google scholar
[57]
J. H. Simpson and H. Y. Carr, Diffusion and Nuclear Spin Relaxation in Water, Phys. Rev. 111, 1201 (1958)
CrossRef ADS Google scholar
[58]
C. Corsaro and D. Mallamace, A nuclear magnetic resonance study of the reversible denaturation of hydrated lysozyme, Physica A: Statistical Mechanics and its Applications 390, 2904 (2011)
[59]
D. W. G. Smith and J. G. Powles, Proton spin-lattice relaxation in liquid water and liquid ammonia, Mol. Phys. 10, 451 (1966)
CrossRef ADS Google scholar
[60]
T. DeFries and J. Jonas, Pressure dependence of NMR proton spin-lattice relaxation times and shear viscosity in liquid water in the temperature range –15–10 °C, J. Chem. Phys. 66, 896 (1977)
CrossRef ADS Google scholar
[61]
E. Lang and H.-D. Lüdemann, Pressure and temperature dependence of the longitudinal proton relaxation times in supercooled water to –87°C and 2500 bar, J. Chem. Phys. 67, 718 (1977)
CrossRef ADS Google scholar
[62]
N. Bloembergen, E. M. Purcell, and R. V. Pound, Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev. 73, 679 (1948)
CrossRef ADS Google scholar
[63]
B. Halle and M. Davidovic, Biomolecular hydration: From water dynamics to hydrodynamics, Proc. Natl. Acad. Sci. USA 100, 12135 (2003)
CrossRef ADS Google scholar
[64]
http://webbook.nist.gov/chemistry/fluid/

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(292 KB)

Accesses

Citations

Detail

Sections
Recommended

/