How far can one send a photon?
The answer to the question How far can one send a photon? depends heavily on what one means by a photon and on what one intends to do with that photon. For direct quantum communication, the limit is approximately 500 km. For terrestrial quantum communication, near-future technologies based on quantum teleportation and quantum memories will soon enable quantum repeaters that will turn the development of a world-wide-quantum-web (WWQW) into a highly non-trivial engineering problem. For Device-Independent Quantum Information Processing, near-future qubit amplifiers (i.e., probabilistic heralded amplification of the probability amplitude of the presence of photonic qubits) will soon allow demonstrations over a few tens of kilometers.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
There are quantum memories with longer storage times; however, they do not allow incoming photons to be s-tored. They either generate photons that are entangled with the quantum memory (hence, there are no read-write quantum memories, but read-only memories [10]), or they do not have any input-output [11]. |
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |