How far can one send a photon?

Nicolas Gisin

PDF(234 KB)
PDF(234 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (6) : 100307. DOI: 10.1007/s11467-015-0485-x
REVIEW ARTICLE
REVIEW ARTICLE

How far can one send a photon?

Author information +
History +

Abstract

The answer to the question How far can one send a photon? depends heavily on what one means by a photon and on what one intends to do with that photon. For direct quantum communication, the limit is approximately 500 km. For terrestrial quantum communication, near-future technologies based on quantum teleportation and quantum memories will soon enable quantum repeaters that will turn the development of a world-wide-quantum-web (WWQW) into a highly non-trivial engineering problem. For Device-Independent Quantum Information Processing, near-future qubit amplifiers (i.e., probabilistic heralded amplification of the probability amplitude of the presence of photonic qubits) will soon allow demonstrations over a few tens of kilometers.

Keywords

quantum communication

Cite this article

Download citation ▾
Nicolas Gisin. How far can one send a photon?. Front. Phys., 2015, 10(6): 100307 https://doi.org/10.1007/s11467-015-0485-x

References

[1]
F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Detecting single infrared photons with 93% system efficiency, Nat. Photonics 7(3), 210 (2013)
CrossRef ADS Google scholar
[2]
B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, Provably secure and practical quantum key distribution over 307 km of optical fibre, Nat. Photonics 9(3), 163 (2015)
CrossRef ADS Google scholar
[3]
N. Gisin and R. Thew, Quantum communication, Nat. Photonics 1(3), 165 (2007)
CrossRef ADS Google scholar
[4]
H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
CrossRef ADS Google scholar
[5]
C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein?Podolsky?Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[6]
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in Quantum Teleportation, Nature Photonics (2015); arXiv: 1505.07831
[7]
J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication, Phys. Rev. Lett. 82(12), 2594 (1999)
CrossRef ADS Google scholar
[8]
W. Tittel and G. Weihs, Photonic entanglement for fundamental tests and quantum communication, Quantum Inf. Comput. 1, 3 (2001)
[9]
N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, Long-distance entanglement distribution with single-photon sources, Phys. Rev. A 76(5), 050301 (2007)
CrossRef ADS Google scholar
[10]
A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, A quantum memory with telecom-wavelength conversion, Nat. Phys. 6(11), 894 (2010)
CrossRef ADS Google scholar
[11]
M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature 517(7533), 177 (2015)
CrossRef ADS Google scholar
[12]
P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, Coherent spin control at the quantum level in an ensemble-based optical memory, Phys. Rev. Lett. 114(23), 230502 (2015)
CrossRef ADS Google scholar
[13]
Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy, Phys. Rev. Lett. 111(24), 240503 (2013)
CrossRef ADS Google scholar
[14]
E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, Broadband waveguide quantum memory for entangled photons, Nature 469, 512 (2011)
CrossRef ADS Google scholar
[15]
I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Mapping multiple photonic qubits into and out of one solid-state atomic ensemble, Nat. Commun. 1(1), 1 (2010)
CrossRef ADS Google scholar
[16]
H. Krovi, S. Guha, and Z. Dutton, Practical quantum repeaters with parametric down-conversion sources, arXiv: 1505.03470 (2015)
[17]
Ch. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, Quantum repeaters with photon pair sources and multimode memories, Phys. Rev. Lett. 98(19), 190503 (2007)
CrossRef ADS Google scholar
[18]
T. C. Ralph and A. P. Lund, Nondeterministic noiseless linear amplification of quantum systems, Quantum Communication Measurement and Computing Proceedings of 9th International Conference, Ed. A. Lvovsky, 155–160 (2009)
[19]
V. Scarani, The device-independent outlook on quantum physics (lecture notes on the power of Bell's theorem), Acta Phys. Slovaca 62, 347 (2012)
[20]
N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)
CrossRef ADS Google scholar
[21]
N. Gisin, Quantum Chance, Nonlocality, Teleportation and Other Quantum Marvels, Springer 2014
[22]
A. Acín, L. Masanes, and N. Gisin, Equivalence between two-qubit entanglement and secure key distribution, Phys. Rev. Lett. 91(16), 167901 (2003)
CrossRef ADS Google scholar
[23]
N. Gisin, Statistics of polarization dependent losses, Opt. Commun. 114(5-6), 399 (1995)
CrossRef ADS Google scholar
[24]
C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, Heralded photon amplification for quantum communication, Phys. Rev. A 86(2), 023815 (2012)
CrossRef ADS Google scholar
[25]
N. Bruno, V. Pini, A. Martin, and R. T. Thew, A complete characterization of the heralded noiseless amplification of photons, New J. Phys. 15(9), 093002 (2013)
CrossRef ADS Google scholar
[26]
N. Gisin, S. Pironio, and N. Sangouard, Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105(7), 070501 (2010)
CrossRef ADS Google scholar
[27]
M. Curty and T. Moroder, Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84(1), 010304 (2011)
CrossRef ADS Google scholar
[28]
D. Pitkanen, X. Ma, R. Wickert, P. vanLoock, and N. Lütkenhaus, Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84(2), 022325 (2011)
CrossRef ADS Google scholar
[29]
S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24(3), 379 (1994)
CrossRef ADS Google scholar
[30]
S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. F. Pryde, Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9, 23 (2013)
CrossRef ADS Google scholar
[31]
N. Bruno, V. Pini, A. Martin, B. Korzh, F. Bussieres, H. Zbinden, N. Gisin, and R. Thew, Heralded amplification of photonic qubits, arXiv: 1507.03210 (2015)
[32]
There are quantum memories with longer storage times; however, they do not allow incoming photons to be s-tored. They either generate photons that are entangled with the quantum memory (hence, there are no read-write quantum memories, but read-only memories [10]), or they do not have any input-output [11].

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/