Shuttle-run synchronization in mobile ad hoc networks

Sheng-Fei Ma , Hong-Jie Bi , Yong Zou , Zong-Hua Liu , Shu-Guang Guan

Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 100505

PDF (633KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 100505 DOI: 10.1007/s11467-015-0475-z
RESEARCH ARTICLE

Shuttle-run synchronization in mobile ad hoc networks

Author information +
History +
PDF (633KB)

Abstract

In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network whose topology changes dynamically. As the network size or the communication radius of individual oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility generally enhances the coherence in such networks. Interestingly, we find a new type of phase synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this synchronization and obtain the critical transition point.

Graphical abstract

Keywords

synchronization / phase transition / ad hoc network

Cite this article

Download citation ▾
Sheng-Fei Ma, Hong-Jie Bi, Yong Zou, Zong-Hua Liu, Shu-Guang Guan. Shuttle-run synchronization in mobile ad hoc networks. Front. Phys., 2015, 10(3): 100505 DOI:10.1007/s11467-015-0475-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. E. Perkins, Ad Hoc Networking, New York: Addison-Wesley, 2000

[2]

T. Camp, J. Boleng, and V. Davies, A survey of mobility models for ad hoc network research, Wireless Commun. Mobile Comput.2(5), 483 (2002)

[3]

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep.424(4−5), 175 (2006)

[4]

S. Liu, Z. W. He, and M. Zhan, Firing rates of coupled noisy excitable elements, Front. Phys.9(1), 120 (2014)

[5]

Y. Zhang and W. H. Wan, States and transitions in mixed networks, Front. Phys.9(4), 523 (2014)

[6]

P. Ke and Z. G. Zheng, Dynamics of rotator chain with dissipative boundary, Front. Phys.9(4), 511 (2014)

[7]

F. Sivrikaya and B. Yener, Time synchronization in sensor networks: A survey, IEEE Netw.18(4), 45 (2004)

[8]

C. Thiemann, M. Treiber, and A. Kesting, Longitudinal hopping in intervehicle communication: Theory and simulations on modeled and empirical trajectory data, Phys. Rev. E78(3), 036102 (2008)

[9]

Z. Liu, Effect of mobility in partially occupied complex networks, Phys. Rev. E81(1), 016110 (2010)

[10]

N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E83(2), 025101 (2011) (R)

[11]

M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett.100(4), 044102 (2008)

[12]

L. Wang, C. P. Zhu, and Z. M. Gu, Scaling of critical connectivity of mobile ad hoc networks, Phys. Rev. E78(6), 066107 (2008)

[13]

Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, New York: Springer, 1984

[14]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D143, 1 (2000)

[15]

W. Krause, I. Glauche, R. Sollacher, and M. Greiner, Impact of network structure on the capacity of wireless multihop ad hoc communication, Physica A338(3−4), 633 (2004)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (633KB)

1109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/