Rectification and phase locking of graphite

Zhen-Bin Zhang, Ru-Juan Jia, Jasmina Tekić, Yang Yang, Cang-Long Wang, Jia-Wei Li, Xiao-Yun Wang, Wen-Shan Duan, Lei Yang

PDF(413 KB)
PDF(413 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 100506. DOI: 10.1007/s11467-015-0473-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Rectification and phase locking of graphite

Author information +
History +

Abstract

Rectification phenomena and the phase locking in a two-dimensional overdamped Frenkel–Kontorova model with a graphite periodic substrate were studied. The presence of dc and ac forces in the longitudinal direction causes the appearance of dynamicalmode locking and the steps in the response function of the system. On the other hand, the presence of an ac force in the transverse direction causes the appearance of rectification, even though there is no net dc force in the transverse direction. It is found that whereas the longitudinal velocity increases in a series of steps, rectification in the transverse direction can occur only between two neighbor steps. The amplitude and phase of the external ac driving force affect the depinning force, rectification of the system and particles trajectories.

Graphical abstract

Keywords

classical transport / friction and lubrication / computer simulation of molecular and particle dynamics

Cite this article

Download citation ▾
Zhen-Bin Zhang, Ru-Juan Jia, Jasmina Tekić, Yang Yang, Cang-Long Wang, Jia-Wei Li, Xiao-Yun Wang, Wen-Shan Duan, Lei Yang. Rectification and phase locking of graphite. Front. Phys., 2015, 10(4): 100506 https://doi.org/10.1007/s11467-015-0473-1

References

[1]
S. Shapiro, Josephson currents in superconducting tunneling: The effect of microwaves and other observations, Phys. Rev. Lett. 11(2), 80 (1963)
CrossRef ADS Google scholar
[2]
C. C. Grimes and S. Shapiro, Millimeter-wave mixing with Josephson junctions, Phys. Rev. 169(2), 397 (1968)
CrossRef ADS Google scholar
[3]
G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60(4), 1129 (1988)
CrossRef ADS Google scholar
[4]
R. E. Thorne, J. S. Hubacek, W. G. Lyons, J. W. Lyding, and J. R. Tucker, ac-dc interference, complete mode locking, and origin of coherent oscillations in sliding charge-densitywave systems, Phys. Rev. B 37(17), 10055 (1988)
CrossRef ADS Google scholar
[5]
G. Kriza, G. Quirion, O. Traetteberg, W. Kang, and D. Jérome, Shapiro interference in a spin-density-wave system, Phys. Rev. Lett. 66(14), 1922 (1991)
CrossRef ADS Google scholar
[6]
J. McCarten, D. A. DiCarlo, M. P. Maher, T. L. Adelman, and R. E. Thorne, Charge-density-wave pinning and finitesize effects in NbSe3, Phys. Rev. B 46(8), 4456 (1992)
CrossRef ADS Google scholar
[7]
S. N. Coppersmith and P. B. Littlewood, Interference phenomena and mode locking in the model of deformable sliding charge-density waves, Phys. Rev. Lett. 57(15), 1927 (1986)
CrossRef ADS Google scholar
[8]
C. Reichhardt, C. J. O. Reichhardt, and M. B. Hastings, Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives, Phys. Rev. B 69(5), 056115 (2004)
CrossRef ADS Google scholar
[9]
J. Y. Lin, M. Gurvitch, S. K. Tolpygo, A. Bourdillon, S. Y. Hou, and J. M. Phillips, Flux pinning in YaBa2Cu3O7-δ thin films with ordered arrays of columnar defects, Phys. Rev. B 54(18), R12717 (1996)
CrossRef ADS Google scholar
[10]
T. Giamarchi and P. Le Doussal, Moving glass phase of driven lattices, Phys. Rev. Lett. 76(18), 3408 (1996)
CrossRef ADS Google scholar
[11]
D. Perez de Lara, L. Dinis, E. M. Gonzalez, J. M. R. Parrondo, J. V. Anguita, and J. L. Vicent, Rocking ratchets in nanostructured superconducting–magnetic hybrids, J. Phys.: Condens. Matter 21(25), 254204 (2009)
CrossRef ADS Google scholar
[12]
J. C. Ciria and C. Giovannella, Vortex dynamics in classical Josephson junction arrays: Models and recent experimental developments, J. Phys.: Condens. Matter 10(7), 1453 (1998)
CrossRef ADS Google scholar
[13]
C. Reichhardt and C. J. Olson Reichhardt, Structural transitions and dynamical regimes for directional locking of vortices and colloids driven over periodic substrates, J. Phys.: Condens. Matter 24(22), 225702 (2012)
CrossRef ADS Google scholar
[14]
C. Reichhardt and C. J. O. Reichhardt, Local melting and drag for a particle driven through a colloidal crystal, Phys. Rev. Lett. 92(10), 108301 (2004)
CrossRef ADS Google scholar
[15]
M. Mikulis, C. J. Olson Reichhardt, C. Reichhard, R. T. Scalettar, and G. T. Zimányi, Reentrant disordering of colloidal molecular crystals on 2D periodic substrates, J. Phys.: Condens. Matter 16, 7909 (2004)
CrossRef ADS Google scholar
[16]
B. D. Josephson, Supercurrents through barriers, Adv. Phys. 14(56), 419 (1965)
CrossRef ADS Google scholar
[17]
S. P. Benz, M. S. Rzchowski, M. Tinkham, and C. J. Lobb, Fractional giant Shapiro steps and spatially correlated phase motion in 2D Josephson arrays, Phys. Rev. Lett. 64(6), 693 (1990)
CrossRef ADS Google scholar
[18]
H. B. Wang, S. M. Kim, S. Urayama, M. Nagao, T. Hatano, S. Arisawa, T. Yamashita, and P. H. Wu, Shapiro steps observed in annular intrinsic Josephson junctions at low microwave frequencies, Appl. Phys. Lett. 88(6), 063503 (2006)
CrossRef ADS Google scholar
[19]
P. Komissinskiy, G. A. Ovsyannikov, K. Y. Constantinian, Y. V. Kislinski, I. V. Borisenko, I. I. Soloviev, V. K. Kornev, E. Goldobin, and D. Winkler, High-frequency dynamics of hybrid oxide Josephson heterostructures, Phys. Rev. B 78(2), 024501 (2008)
CrossRef ADS Google scholar
[20]
R. de Luca, Ratchet potential in superconducting quantum interference devices containing a double-barrier junction, Supercond. Sci. Technol. 22(8), 085008 (2009)
CrossRef ADS Google scholar
[21]
Y. Yang, W. S. Duan, L. Yang, J. M. Chen, and M. M. Lin, Rectification and phase locking in overdamped two-dimensional Frenkel–Kontorova model, Europhys. Lett. 93(1), 16001 (2011)
CrossRef ADS Google scholar
[22]
B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)
CrossRef ADS Google scholar
[23]
B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)
CrossRef ADS Google scholar
[24]
C. L. Wang, J. Tekić, W. S. Duan, Z. G. Shao, and L. Yang, Existence and stability of the resonant phenomena in the dcand ac-driven overdamped Frenkel–Kontorova model with the incommensurate structure, Phys. Rev. E 84(4), 046603 (2011)
CrossRef ADS Google scholar
[25]
C. L. Wang, J. Tekić, W. S. Duan, Z. G. Shao, and L. Yang, Ratchet effect and amplitude dependence of phase locking in a two-dimensional Frenkel–Kontorova model, J. Chem. Phys. 138(3), 034307 (2013)
CrossRef ADS Google scholar
[26]
O. M. Braun and Y. S. Kivshar, The Frenkel–Kontorova Model, Berlin: Springer, 2003
[27]
J. Tekić, O. M. Braun, and B. Hu, Dynamic phases in the two-dimensional underdamped driven Frenkel–Kontorova model, Phys. Rev. E 71(2), 026104 (2005)
CrossRef ADS Google scholar
[28]
J. A. van den Ende, A. S. de Wijn, and A. Fasolino, The effect of temperature and velocity on superlubricity, J. Phys.: Condens. Matter 24(44), 445009 (2012)
CrossRef ADS Google scholar
[29]
C. F. Kreiner and J. Zimmer, Existence of subsonic heteroclinic waves for the Frenkel–Kontorova model with piecewise quadratic on-site potential, Nonlinearity 24(4), 1137 (2011)
CrossRef ADS Google scholar
[30]
B. Hu, B. Li, and H. Zhao, Mode-locking of incommensurate phase by quantum zero-point energy in the Frenkel–Kontorova model, Europhys. Lett. 53(3), 342 (2001)
CrossRef ADS Google scholar
[31]
O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1-2), 1 (1998)
CrossRef ADS Google scholar
[32]
L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel–Kontorova model, Adv. Phys. 45(6), 505 (1996)
CrossRef ADS Google scholar
[33]
F. Falo, L. M. Floría, P. J. Martínez, and J. J. Mazo, Unlocking mechanism in the ac dynamics of the Frenkel–Kontorova model, Phys. Rev. B 48(10), 7434 (1993)
CrossRef ADS Google scholar
[34]
M. Inui and S. Doniach, Use of few-domain classical models to study mode locking in charge-density-wave systems, Phys. Rev. B 35(12), 6244 (1987)
CrossRef ADS Google scholar
[35]
M. O. Magnasco, Forced thermal ratchets, Phys. Rev. Lett. 71(10), 1477 (1993)
CrossRef ADS Google scholar
[36]
R. D. Astumian, Thermodynamics and Kinetics of a Brownian Motor, Science 276(5314), 917 (1997)
CrossRef ADS Google scholar
[37]
J. L. Mateos, Chaotic transport and current reversal in deterministic ratchets, Phys. Rev. Lett. 84(2), 258 (2000)
CrossRef ADS Google scholar
[38]
R. Bartussek, P. Hänggi, and J. C. Kissner, Periodically rocked thermal ratchets, Europhys. Lett. 28(7), 459 (1994)
CrossRef ADS Google scholar
[39]
C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurczak, J. Y. Courtois, and G. Grynberg, Ratchet for cold rubidium atoms: The asymmetric optical lattice, Phys. Rev. Lett. 82(4), 851 (1999)
CrossRef ADS Google scholar
[40]
H. Linke, T. E. Humphrey, A. Lofgren, A. O. Sushkov, R. Newbury, R. P. Taylor, and P. Omling, Experimental tunneling ratchets, Science 286(5448), 2314 (1999)
CrossRef ADS Google scholar
[41]
A. V. Silhanek, W. Gillijns, V. V. Moshchalkov, V. Metlushko, F. Gozzini, B. Ilic, W. C. Uhlig, and J. Unguris, Manipulation of the vortex motion in nanostructured ferromagnetic/superconductor hybrids, Appl. Phys. Lett. 90(18), 182501 (2007)
CrossRef ADS Google scholar
[42]
C. C. de Souza Silva, J. Van de Vondel, M. Morelle, and V. V. Moshchalkov, Controlled multiple reversals of a ratchet effect, Nature 440(7084), 651 (2006)
CrossRef ADS Google scholar
[43]
Z. Farkas, P. Tegzes, A. Vukics, and T. Vicsek, Transitions in the horizontal transport of vertically vibrated granular layers, Phys. Rev. E 60(6), 7022 (1999)
CrossRef ADS Google scholar
[44]
J. F. Wambaugh, C. Reichhardt, C. J. Olson, F. Marchesoni, and F. Nori, Superconducting fluxon pumps and lenses, Phys. Rev. Lett. 83(24), 5106 (1999)
CrossRef ADS Google scholar
[45]
I. Zapata, R. Bartussek, F. Sols, and P. Hänggi, Voltage rectification by a SQUID ratchet, Phys. Rev. Lett. 77(11), 2292 (1996)
CrossRef ADS Google scholar
[46]
W. D. Volkmuth and R. H. Austin, DNA electrophoresis in microlithographic arrays, Nature 358(6387), 600 (1992)
CrossRef ADS Google scholar
[47]
T. A. J. Duke, and R. H. Austin, Microfabricated sieve for the continuous sorting of macromolecules, Phys. Rev. Lett. 80(7), 1552 (1998)
CrossRef ADS Google scholar
[48]
J. L. Viovy, Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms, Rev. Mod. Phys. 72(3), 813 (2000)
CrossRef ADS Google scholar
[49]
C. Reichhardt and F. Nori, Phase locking, Devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning, Phys. Rev. Lett. 82(2), 414 (1999)
CrossRef ADS Google scholar
[50]
P. T. Korda, M. B. Taylor, and D. G. Grier, Kinetically locked-in colloidal transport in an array of optical tweezers, Phys. Rev. Lett. 89(12), 128301 (2002)
CrossRef ADS Google scholar
[51]
D. G. Grier, A revolution in optical manipulation, Nature 424(6950), 810 (2003)
CrossRef ADS Google scholar
[52]
G. A. Cecchi and M. O. Magnasco, Negative resistance and rectification in Brownian transport, Phys. Rev. Lett. 76(11), 1968 (1996)
CrossRef ADS Google scholar
[53]
R. Eichhorn, P. Reimann, and P. Hänggi, Brownian motion exhibiting absolute negative mobility, Phys. Rev. Lett. 88(19), 190601 (2002)
CrossRef ADS Google scholar
[54]
Z. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89(15), 154102 (2002)
CrossRef ADS Google scholar
[55]
S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442(7100), 282 (2006)
CrossRef ADS Google scholar
[56]
X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotechnol. 3(9), 538 (2008)
CrossRef ADS Google scholar
[57]
D. Yu and L. Dai, Appl. Phys. Lett. 96, 14310 (2010)
[58]
L. Huang, Y. C. Lai, D. K. Ferry, R. Akis, and S. M. Goodnick, Transmission and scarring in graphene quantum dots, J. Phys.: Condens. Matter 21(34), 344203 (2009)
CrossRef ADS Google scholar
[59]
L. Ying, L. Huang, Y. C. Lai, and Y. Zhang, Effect of geometrical rotation on conductance fluctuations in graphene quantum dots, J. Phys.: Condens. Matter 25(10), 105802 (2013)
CrossRef ADS Google scholar
[60]
L. Ying, L. Huang, Y. C. Lai, and C. Grebogi, Conductance fluctuations in graphene systems: The relevance of classical dynamics, Phys. Rev. B 85(24), 245448 (2012)
CrossRef ADS Google scholar
[61]
S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5(8), 574 (2010)
CrossRef ADS Google scholar
[62]
D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. B. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)
CrossRef ADS Google scholar
[63]
J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Electromechanical resonators from graphene sheets, Science 315(5811), 490 (2007)
CrossRef ADS Google scholar
[64]
Q. Zheng, B. Jiang, S. Liu, Yu. Weng, L. Lu, Q. Xue, J. Zhu, Q. Jiang, S. Wang, and L. Peng, Self-retracting motion of graphite microflakes, Phys. Rev. Lett. 100(6), 067205 (2008)
CrossRef ADS Google scholar
[65]
V. V. Deshpande, H. Y. Chiu, H. W. Ch. Postma, C. Miko, L. Forro, and M. Bockrath, Carbon nanotube linear bearing nanoswitches, Nano Lett. 6(6), 1092 (2006)
CrossRef ADS Google scholar
[66]
A. Subramanian, L. X. Dong, B. J. Nelson, and A. Ferreira, Supermolecular switches based on multiwalled carbon nanotubes, Appl. Phys. Lett. 96(7), 073116 (2010)
CrossRef ADS Google scholar
[67]
E. Bichoutskaia, A. M. Popov, Yu. E. Lozovik, O. V. Ershova, I. V. Lebedeva, and A. A. Knizhnik, Modeling of an ultrahigh-frequency resonator based on the relative vibrations of carbon nanotubes, Phys. Rev. B 80(16), 165427 (2009)
CrossRef ADS Google scholar
[68]
E. Bichoutskaia, A. M. Popov, Yu. E. Lozovik, O. V. Ershova, I. V. Lebedeva, and A. A. Knizhnik, Nanoresonator based on relative vibrations of the walls of carbon nanotubes, Fullerenes, Nanotubes, and Carbon Nanostructures 18(4–6), 523 (2010)
CrossRef ADS Google scholar
[69]
I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, Yu. E. Lozovik, and B. V. Potapkin, Interlayer interaction and relative vibrations of bilayer graphene, Phys. Chem. Chem. Phys. 13(13), 5687 (2011)
CrossRef ADS Google scholar
[70]
Yu. E. Lozovik and A. M. Popov, Properties and nanotechnological applications of nanotubes, Physics-Uspekhi 50(7), 749 (2007)
CrossRef ADS Google scholar
[71]
J. J. Vilatela, J. A. Elliott, and A. H. Windle, A model for the strength of yarn-like carbon nanotube fibers, ACS Nano 5(3), 1921 (2011)
CrossRef ADS Google scholar
[72]
C. Reichhardt, C. J. Olson, and M. B. Hastings, Rectification and phase locking for particles on symmetric twodimensional periodic substrates, Phys. Rev. Lett. 89(2), 024101 (2002)
CrossRef ADS Google scholar
[73]
B. Hu and J. Tekić, Frequency oscillations of the Shapiro steps, Appl. Phys. Lett. 90(10), 102119 (2007)
CrossRef ADS Google scholar
[74]
B. Hu and J. Tekić, Amplitude and frequency dependence of the Shapiro steps in the dc- and ac-driven overdamped Frenkel–Kontorova model, Phys. Rev. E 75(5), 056608 (2007)
CrossRef ADS Google scholar
[75]
J. Tekić, and B. Hu, Properties of the Shapiro steps in the ac driven Frenkel–Kontorova model with deformable substrate potential, Phys. Rev. E 81(3), 036604 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(413 KB)

Accesses

Citations

Detail

Sections
Recommended

/