Rectification and phase locking of graphite
Zhen-Bin Zhang, Ru-Juan Jia, Jasmina Tekić, Yang Yang, Cang-Long Wang, Jia-Wei Li, Xiao-Yun Wang, Wen-Shan Duan, Lei Yang
Rectification and phase locking of graphite
Rectification phenomena and the phase locking in a two-dimensional overdamped Frenkel–Kontorova model with a graphite periodic substrate were studied. The presence of dc and ac forces in the longitudinal direction causes the appearance of dynamicalmode locking and the steps in the response function of the system. On the other hand, the presence of an ac force in the transverse direction causes the appearance of rectification, even though there is no net dc force in the transverse direction. It is found that whereas the longitudinal velocity increases in a series of steps, rectification in the transverse direction can occur only between two neighbor steps. The amplitude and phase of the external ac driving force affect the depinning force, rectification of the system and particles trajectories.
classical transport / friction and lubrication / computer simulation of molecular and particle dynamics
[1] |
S. Shapiro, Josephson currents in superconducting tunneling: The effect of microwaves and other observations, Phys. Rev. Lett. 11(2), 80 (1963)
CrossRef
ADS
Google scholar
|
[2] |
C. C. Grimes and S. Shapiro, Millimeter-wave mixing with Josephson junctions, Phys. Rev. 169(2), 397 (1968)
CrossRef
ADS
Google scholar
|
[3] |
G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60(4), 1129 (1988)
CrossRef
ADS
Google scholar
|
[4] |
R. E. Thorne, J. S. Hubacek, W. G. Lyons, J. W. Lyding, and J. R. Tucker, ac-dc interference, complete mode locking, and origin of coherent oscillations in sliding charge-densitywave systems, Phys. Rev. B 37(17), 10055 (1988)
CrossRef
ADS
Google scholar
|
[5] |
G. Kriza, G. Quirion, O. Traetteberg, W. Kang, and D. Jérome, Shapiro interference in a spin-density-wave system, Phys. Rev. Lett. 66(14), 1922 (1991)
CrossRef
ADS
Google scholar
|
[6] |
J. McCarten, D. A. DiCarlo, M. P. Maher, T. L. Adelman, and R. E. Thorne, Charge-density-wave pinning and finitesize effects in NbSe3, Phys. Rev. B 46(8), 4456 (1992)
CrossRef
ADS
Google scholar
|
[7] |
S. N. Coppersmith and P. B. Littlewood, Interference phenomena and mode locking in the model of deformable sliding charge-density waves, Phys. Rev. Lett. 57(15), 1927 (1986)
CrossRef
ADS
Google scholar
|
[8] |
C. Reichhardt, C. J. O. Reichhardt, and M. B. Hastings, Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives, Phys. Rev. B 69(5), 056115 (2004)
CrossRef
ADS
Google scholar
|
[9] |
J. Y. Lin, M. Gurvitch, S. K. Tolpygo, A. Bourdillon, S. Y. Hou, and J. M. Phillips, Flux pinning in YaBa2Cu3O7-δ thin films with ordered arrays of columnar defects, Phys. Rev. B 54(18), R12717 (1996)
CrossRef
ADS
Google scholar
|
[10] |
T. Giamarchi and P. Le Doussal, Moving glass phase of driven lattices, Phys. Rev. Lett. 76(18), 3408 (1996)
CrossRef
ADS
Google scholar
|
[11] |
D. Perez de Lara, L. Dinis, E. M. Gonzalez, J. M. R. Parrondo, J. V. Anguita, and J. L. Vicent, Rocking ratchets in nanostructured superconducting–magnetic hybrids, J. Phys.: Condens. Matter 21(25), 254204 (2009)
CrossRef
ADS
Google scholar
|
[12] |
J. C. Ciria and C. Giovannella, Vortex dynamics in classical Josephson junction arrays: Models and recent experimental developments, J. Phys.: Condens. Matter 10(7), 1453 (1998)
CrossRef
ADS
Google scholar
|
[13] |
C. Reichhardt and C. J. Olson Reichhardt, Structural transitions and dynamical regimes for directional locking of vortices and colloids driven over periodic substrates, J. Phys.: Condens. Matter 24(22), 225702 (2012)
CrossRef
ADS
Google scholar
|
[14] |
C. Reichhardt and C. J. O. Reichhardt, Local melting and drag for a particle driven through a colloidal crystal, Phys. Rev. Lett. 92(10), 108301 (2004)
CrossRef
ADS
Google scholar
|
[15] |
M. Mikulis, C. J. Olson Reichhardt, C. Reichhard, R. T. Scalettar, and G. T. Zimányi, Reentrant disordering of colloidal molecular crystals on 2D periodic substrates, J. Phys.: Condens. Matter 16, 7909 (2004)
CrossRef
ADS
Google scholar
|
[16] |
B. D. Josephson, Supercurrents through barriers, Adv. Phys. 14(56), 419 (1965)
CrossRef
ADS
Google scholar
|
[17] |
S. P. Benz, M. S. Rzchowski, M. Tinkham, and C. J. Lobb, Fractional giant Shapiro steps and spatially correlated phase motion in 2D Josephson arrays, Phys. Rev. Lett. 64(6), 693 (1990)
CrossRef
ADS
Google scholar
|
[18] |
H. B. Wang, S. M. Kim, S. Urayama, M. Nagao, T. Hatano, S. Arisawa, T. Yamashita, and P. H. Wu, Shapiro steps observed in annular intrinsic Josephson junctions at low microwave frequencies, Appl. Phys. Lett. 88(6), 063503 (2006)
CrossRef
ADS
Google scholar
|
[19] |
P. Komissinskiy, G. A. Ovsyannikov, K. Y. Constantinian, Y. V. Kislinski, I. V. Borisenko, I. I. Soloviev, V. K. Kornev, E. Goldobin, and D. Winkler, High-frequency dynamics of hybrid oxide Josephson heterostructures, Phys. Rev. B 78(2), 024501 (2008)
CrossRef
ADS
Google scholar
|
[20] |
R. de Luca, Ratchet potential in superconducting quantum interference devices containing a double-barrier junction, Supercond. Sci. Technol. 22(8), 085008 (2009)
CrossRef
ADS
Google scholar
|
[21] |
Y. Yang, W. S. Duan, L. Yang, J. M. Chen, and M. M. Lin, Rectification and phase locking in overdamped two-dimensional Frenkel–Kontorova model, Europhys. Lett. 93(1), 16001 (2011)
CrossRef
ADS
Google scholar
|
[22] |
B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)
CrossRef
ADS
Google scholar
|
[23] |
B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)
CrossRef
ADS
Google scholar
|
[24] |
C. L. Wang, J. Tekić, W. S. Duan, Z. G. Shao, and L. Yang, Existence and stability of the resonant phenomena in the dcand ac-driven overdamped Frenkel–Kontorova model with the incommensurate structure, Phys. Rev. E 84(4), 046603 (2011)
CrossRef
ADS
Google scholar
|
[25] |
C. L. Wang, J. Tekić, W. S. Duan, Z. G. Shao, and L. Yang, Ratchet effect and amplitude dependence of phase locking in a two-dimensional Frenkel–Kontorova model, J. Chem. Phys. 138(3), 034307 (2013)
CrossRef
ADS
Google scholar
|
[26] |
O. M. Braun and Y. S. Kivshar, The Frenkel–Kontorova Model, Berlin: Springer, 2003
|
[27] |
J. Tekić, O. M. Braun, and B. Hu, Dynamic phases in the two-dimensional underdamped driven Frenkel–Kontorova model, Phys. Rev. E 71(2), 026104 (2005)
CrossRef
ADS
Google scholar
|
[28] |
J. A. van den Ende, A. S. de Wijn, and A. Fasolino, The effect of temperature and velocity on superlubricity, J. Phys.: Condens. Matter 24(44), 445009 (2012)
CrossRef
ADS
Google scholar
|
[29] |
C. F. Kreiner and J. Zimmer, Existence of subsonic heteroclinic waves for the Frenkel–Kontorova model with piecewise quadratic on-site potential, Nonlinearity 24(4), 1137 (2011)
CrossRef
ADS
Google scholar
|
[30] |
B. Hu, B. Li, and H. Zhao, Mode-locking of incommensurate phase by quantum zero-point energy in the Frenkel–Kontorova model, Europhys. Lett. 53(3), 342 (2001)
CrossRef
ADS
Google scholar
|
[31] |
O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1-2), 1 (1998)
CrossRef
ADS
Google scholar
|
[32] |
L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel–Kontorova model, Adv. Phys. 45(6), 505 (1996)
CrossRef
ADS
Google scholar
|
[33] |
F. Falo, L. M. Floría, P. J. Martínez, and J. J. Mazo, Unlocking mechanism in the ac dynamics of the Frenkel–Kontorova model, Phys. Rev. B 48(10), 7434 (1993)
CrossRef
ADS
Google scholar
|
[34] |
M. Inui and S. Doniach, Use of few-domain classical models to study mode locking in charge-density-wave systems, Phys. Rev. B 35(12), 6244 (1987)
CrossRef
ADS
Google scholar
|
[35] |
M. O. Magnasco, Forced thermal ratchets, Phys. Rev. Lett. 71(10), 1477 (1993)
CrossRef
ADS
Google scholar
|
[36] |
R. D. Astumian, Thermodynamics and Kinetics of a Brownian Motor, Science 276(5314), 917 (1997)
CrossRef
ADS
Google scholar
|
[37] |
J. L. Mateos, Chaotic transport and current reversal in deterministic ratchets, Phys. Rev. Lett. 84(2), 258 (2000)
CrossRef
ADS
Google scholar
|
[38] |
R. Bartussek, P. Hänggi, and J. C. Kissner, Periodically rocked thermal ratchets, Europhys. Lett. 28(7), 459 (1994)
CrossRef
ADS
Google scholar
|
[39] |
C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurczak, J. Y. Courtois, and G. Grynberg, Ratchet for cold rubidium atoms: The asymmetric optical lattice, Phys. Rev. Lett. 82(4), 851 (1999)
CrossRef
ADS
Google scholar
|
[40] |
H. Linke, T. E. Humphrey, A. Lofgren, A. O. Sushkov, R. Newbury, R. P. Taylor, and P. Omling, Experimental tunneling ratchets, Science 286(5448), 2314 (1999)
CrossRef
ADS
Google scholar
|
[41] |
A. V. Silhanek, W. Gillijns, V. V. Moshchalkov, V. Metlushko, F. Gozzini, B. Ilic, W. C. Uhlig, and J. Unguris, Manipulation of the vortex motion in nanostructured ferromagnetic/superconductor hybrids, Appl. Phys. Lett. 90(18), 182501 (2007)
CrossRef
ADS
Google scholar
|
[42] |
C. C. de Souza Silva, J. Van de Vondel, M. Morelle, and V. V. Moshchalkov, Controlled multiple reversals of a ratchet effect, Nature 440(7084), 651 (2006)
CrossRef
ADS
Google scholar
|
[43] |
Z. Farkas, P. Tegzes, A. Vukics, and T. Vicsek, Transitions in the horizontal transport of vertically vibrated granular layers, Phys. Rev. E 60(6), 7022 (1999)
CrossRef
ADS
Google scholar
|
[44] |
J. F. Wambaugh, C. Reichhardt, C. J. Olson, F. Marchesoni, and F. Nori, Superconducting fluxon pumps and lenses, Phys. Rev. Lett. 83(24), 5106 (1999)
CrossRef
ADS
Google scholar
|
[45] |
I. Zapata, R. Bartussek, F. Sols, and P. Hänggi, Voltage rectification by a SQUID ratchet, Phys. Rev. Lett. 77(11), 2292 (1996)
CrossRef
ADS
Google scholar
|
[46] |
W. D. Volkmuth and R. H. Austin, DNA electrophoresis in microlithographic arrays, Nature 358(6387), 600 (1992)
CrossRef
ADS
Google scholar
|
[47] |
T. A. J. Duke, and R. H. Austin, Microfabricated sieve for the continuous sorting of macromolecules, Phys. Rev. Lett. 80(7), 1552 (1998)
CrossRef
ADS
Google scholar
|
[48] |
J. L. Viovy, Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms, Rev. Mod. Phys. 72(3), 813 (2000)
CrossRef
ADS
Google scholar
|
[49] |
C. Reichhardt and F. Nori, Phase locking, Devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning, Phys. Rev. Lett. 82(2), 414 (1999)
CrossRef
ADS
Google scholar
|
[50] |
P. T. Korda, M. B. Taylor, and D. G. Grier, Kinetically locked-in colloidal transport in an array of optical tweezers, Phys. Rev. Lett. 89(12), 128301 (2002)
CrossRef
ADS
Google scholar
|
[51] |
D. G. Grier, A revolution in optical manipulation, Nature 424(6950), 810 (2003)
CrossRef
ADS
Google scholar
|
[52] |
G. A. Cecchi and M. O. Magnasco, Negative resistance and rectification in Brownian transport, Phys. Rev. Lett. 76(11), 1968 (1996)
CrossRef
ADS
Google scholar
|
[53] |
R. Eichhorn, P. Reimann, and P. Hänggi, Brownian motion exhibiting absolute negative mobility, Phys. Rev. Lett. 88(19), 190601 (2002)
CrossRef
ADS
Google scholar
|
[54] |
Z. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89(15), 154102 (2002)
CrossRef
ADS
Google scholar
|
[55] |
S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442(7100), 282 (2006)
CrossRef
ADS
Google scholar
|
[56] |
X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotechnol. 3(9), 538 (2008)
CrossRef
ADS
Google scholar
|
[57] |
D. Yu and L. Dai, Appl. Phys. Lett. 96, 14310 (2010)
|
[58] |
L. Huang, Y. C. Lai, D. K. Ferry, R. Akis, and S. M. Goodnick, Transmission and scarring in graphene quantum dots, J. Phys.: Condens. Matter 21(34), 344203 (2009)
CrossRef
ADS
Google scholar
|
[59] |
L. Ying, L. Huang, Y. C. Lai, and Y. Zhang, Effect of geometrical rotation on conductance fluctuations in graphene quantum dots, J. Phys.: Condens. Matter 25(10), 105802 (2013)
CrossRef
ADS
Google scholar
|
[60] |
L. Ying, L. Huang, Y. C. Lai, and C. Grebogi, Conductance fluctuations in graphene systems: The relevance of classical dynamics, Phys. Rev. B 85(24), 245448 (2012)
CrossRef
ADS
Google scholar
|
[61] |
S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5(8), 574 (2010)
CrossRef
ADS
Google scholar
|
[62] |
D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. B. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)
CrossRef
ADS
Google scholar
|
[63] |
J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Electromechanical resonators from graphene sheets, Science 315(5811), 490 (2007)
CrossRef
ADS
Google scholar
|
[64] |
Q. Zheng, B. Jiang, S. Liu, Yu. Weng, L. Lu, Q. Xue, J. Zhu, Q. Jiang, S. Wang, and L. Peng, Self-retracting motion of graphite microflakes, Phys. Rev. Lett. 100(6), 067205 (2008)
CrossRef
ADS
Google scholar
|
[65] |
V. V. Deshpande, H. Y. Chiu, H. W. Ch. Postma, C. Miko, L. Forro, and M. Bockrath, Carbon nanotube linear bearing nanoswitches, Nano Lett. 6(6), 1092 (2006)
CrossRef
ADS
Google scholar
|
[66] |
A. Subramanian, L. X. Dong, B. J. Nelson, and A. Ferreira, Supermolecular switches based on multiwalled carbon nanotubes, Appl. Phys. Lett. 96(7), 073116 (2010)
CrossRef
ADS
Google scholar
|
[67] |
E. Bichoutskaia, A. M. Popov, Yu. E. Lozovik, O. V. Ershova, I. V. Lebedeva, and A. A. Knizhnik, Modeling of an ultrahigh-frequency resonator based on the relative vibrations of carbon nanotubes, Phys. Rev. B 80(16), 165427 (2009)
CrossRef
ADS
Google scholar
|
[68] |
E. Bichoutskaia, A. M. Popov, Yu. E. Lozovik, O. V. Ershova, I. V. Lebedeva, and A. A. Knizhnik, Nanoresonator based on relative vibrations of the walls of carbon nanotubes, Fullerenes, Nanotubes, and Carbon Nanostructures 18(4–6), 523 (2010)
CrossRef
ADS
Google scholar
|
[69] |
I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, Yu. E. Lozovik, and B. V. Potapkin, Interlayer interaction and relative vibrations of bilayer graphene, Phys. Chem. Chem. Phys. 13(13), 5687 (2011)
CrossRef
ADS
Google scholar
|
[70] |
Yu. E. Lozovik and A. M. Popov, Properties and nanotechnological applications of nanotubes, Physics-Uspekhi 50(7), 749 (2007)
CrossRef
ADS
Google scholar
|
[71] |
J. J. Vilatela, J. A. Elliott, and A. H. Windle, A model for the strength of yarn-like carbon nanotube fibers, ACS Nano 5(3), 1921 (2011)
CrossRef
ADS
Google scholar
|
[72] |
C. Reichhardt, C. J. Olson, and M. B. Hastings, Rectification and phase locking for particles on symmetric twodimensional periodic substrates, Phys. Rev. Lett. 89(2), 024101 (2002)
CrossRef
ADS
Google scholar
|
[73] |
B. Hu and J. Tekić, Frequency oscillations of the Shapiro steps, Appl. Phys. Lett. 90(10), 102119 (2007)
CrossRef
ADS
Google scholar
|
[74] |
B. Hu and J. Tekić, Amplitude and frequency dependence of the Shapiro steps in the dc- and ac-driven overdamped Frenkel–Kontorova model, Phys. Rev. E 75(5), 056608 (2007)
CrossRef
ADS
Google scholar
|
[75] |
J. Tekić, and B. Hu, Properties of the Shapiro steps in the ac driven Frenkel–Kontorova model with deformable substrate potential, Phys. Rev. E 81(3), 036604 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |