Novel method to determine effective length of quantum confinement using fractional-dimension space approach

Hua Li, Bing-Can Liu, Bing-Xin Shi, Si-Yu Dong, Qiang Tian

PDF(380 KB)
PDF(380 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 107302. DOI: 10.1007/s11467-015-0472-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel method to determine effective length of quantum confinement using fractional-dimension space approach

Author information +
History +

Abstract

The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlxGa1-x As substrate are investigated, for different film thickness values and aluminum concentrations and within the framework of the fractional-dimensional space approach. Using this scheme, we propose a new method to define the effective length of the quantum confinement. The limitations of the definition of the original effective well width are discussed, and the binding energy and effective mass of a polaron confined in a GaAs film are obtained. The fractional-dimensional theoretical results are shown to be in good agreement with previous, more detailed calculations based on second-order perturbation theory.

Graphical abstract

Keywords

fractional-dimensional approach / effective length of quantum confinement / polaron effect / GaAs film

Cite this article

Download citation ▾
Hua Li, Bing-Can Liu, Bing-Xin Shi, Si-Yu Dong, Qiang Tian. Novel method to determine effective length of quantum confinement using fractional-dimension space approach. Front. Phys., 2015, 10(4): 107302 https://doi.org/10.1007/s11467-015-0472-2

References

[1]
L. Wendler and R. Haupt, Electron-phonon interaction in semiconductor superlattices, Phys. Status Solidi B 143(2), 487 (1987)
CrossRef ADS Google scholar
[2]
N. Mori and T. Ando, Electron optical-phonon interaction in single and double heterostructures, Phys. Rev. B 40(9), 6175 (1989)
CrossRef ADS Google scholar
[3]
X. X. Lang, The interaction of interface optical phonons with an electron in an asymmetric quantum well, J. Phys.: Condens. Matter 4(49), 9769 (1992)
CrossRef ADS Google scholar
[4]
F. H. Stillinger, Axiomatic basis for spaces with non integer dimension, J. Math. Phys. 18(6), 1224 (1977)
CrossRef ADS Google scholar
[5]
X. F. He, Excitons in anisotropic solids: The model of fractional dimensional space, Phys. Rev. B 43(3), 2063 (1991)
CrossRef ADS Google scholar
[6]
H. Mathieu, P. Lefebvre, and P. Christol, Simple analytical method for calculating exciton binding energies in semiconductor quantum wells, Phys. Rev. B 46(7), 4092 (1992)
CrossRef ADS Google scholar
[7]
P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992)
CrossRef ADS Google scholar
[8]
P. Christol, P. Lefebvre, and H. Mathieu, Fractionaldimensional calculation of exciton binding energies in semiconductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993)
CrossRef ADS Google scholar
[9]
P. Lefebvre, P. Christol, H. Mathieu, and S. Glutsch, Confined excitons in semiconductors: Correlation between binding energy and spectral absorption shape, Phys. Rev. B 52(8), 5756 (1995)
CrossRef ADS Google scholar
[10]
M. Dios-Leyva, A. Bruno Alfonso, A. Matos-Abiague, and L. E. Oliveira, Excitonic and shallow-donor states in semiconducting quantum wells: A fractional dimensional space approach, J. Phys.: Condens. Matter 9(40), 8477 (1997)
CrossRef ADS Google scholar
[11]
A. Matos-Abiague, L. E. Oliveira, and M. de Dios-Leyva, Fractional-dimensional approach for excitons in GaAs- Ga1-xAlxAs quantum wells, Phys. Rev. B 58(7), 4072 (1998)
CrossRef ADS Google scholar
[12]
Z. P. Wang and X. X. Liang, Electron-phonon effects on Stark shifts of excitons in parabolic quantum wells: Fractional-dimension variational approach, Phys. Lett. A 373(30), 2596 (2009)
CrossRef ADS Google scholar
[13]
A. Matos-Abiague, A fractional-dimensional space approach to the polaron effect in quantum wells, J. Phys.: Condens. Matter 14(17), 4543 (2002)
CrossRef ADS Google scholar
[14]
A. Matos-Abiague, Fractional-dimensional space approach for parabolic-confined polarons, Semicond. Sci. Technol. 17(2), 150 (2002)
CrossRef ADS Google scholar
[15]
A. Matos-Abiague, Polaron effect in GaAs-Ga1-xAlx As quantum wells: A fractional-dimensional space approach, Phys. Rev. B 65, 165321 (2002)
CrossRef ADS Google scholar
[16]
R. L. R. Suárez and A. Matos-Abiague, Fractionaldimensional polaron corrections in asymmetric GaAs-Ga1-xAlx As quantum wells, Physica E 18(4), 485 (2003)
CrossRef ADS Google scholar
[17]
A. Thilagam and A. Matos-Abiague, Excitonic polarons in confined systems, J. Phys.: Condens. Matter 16(23), 3981 (2004)
CrossRef ADS Google scholar
[18]
E. R. Gómez, L. E. Oliveira, and M. de Dios Leyva, Shallow impurities in semiconductor superlattices: A fractionaldimensional space approach, J. Appl. Phys. 85(8), 4045 (1999)
CrossRef ADS Google scholar
[19]
I. D. Mikhailov, F. J. Betancur, R. A. Escorcia, and J. Sierra-Ortega, Shallow donors in semiconductor heterostructures: Fractal dimension approach and the variational principle, Phys. Rev. B 67(11), 115317 (2003)
CrossRef ADS Google scholar
[20]
J. Kundrotas, A. Cerškus, S. Ašmontas, Steponas Asmontas, G. Valusis, B. Sherlikerl and M. P. Harrison, Excitonic and impurity-related optical transitions in Be delta-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach. Phys. Rev. B 72(23), 235322 (2005)
CrossRef ADS Google scholar
[21]
J. Kundrotas, A. Cerškus, S. Ašmontas, G. Valušis, M. P. Halsall, E. Johannessen, and P. Harrison, Impurity-induced Huang–Rhys factor in beryllium δ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Semicond. Sci. Technol. 22(9), 1070 (2007)
CrossRef ADS Google scholar
[22]
Z. H. Wu, H. Li, L. Yan, B. Liu, and Q. Tian, The polaron in a GaAs film deposited on AlxGa1-x As influenced by the thickness of the substrate, Superlattices Microstruct. 55, 16 (2013)
CrossRef ADS Google scholar
[23]
Z. H. Wu, H. Li, L. Yan, B. Liu, and Q. Tian, Polaron effect in a GaAs film: The fraction-dimensional space approach, Acta Phys. Sin. 62, 097302 (2013) (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(380 KB)

Accesses

Citations

Detail

Sections
Recommended

/