Novel method to determine effective length of quantum confinement using fractional-dimension space approach
Hua Li, Bing-Can Liu, Bing-Xin Shi, Si-Yu Dong, Qiang Tian
Novel method to determine effective length of quantum confinement using fractional-dimension space approach
The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlxGa1-x As substrate are investigated, for different film thickness values and aluminum concentrations and within the framework of the fractional-dimensional space approach. Using this scheme, we propose a new method to define the effective length of the quantum confinement. The limitations of the definition of the original effective well width are discussed, and the binding energy and effective mass of a polaron confined in a GaAs film are obtained. The fractional-dimensional theoretical results are shown to be in good agreement with previous, more detailed calculations based on second-order perturbation theory.
fractional-dimensional approach / effective length of quantum confinement / polaron effect / GaAs film
[1] |
L. Wendler and R. Haupt, Electron-phonon interaction in semiconductor superlattices, Phys. Status Solidi B 143(2), 487 (1987)
CrossRef
ADS
Google scholar
|
[2] |
N. Mori and T. Ando, Electron optical-phonon interaction in single and double heterostructures, Phys. Rev. B 40(9), 6175 (1989)
CrossRef
ADS
Google scholar
|
[3] |
X. X. Lang, The interaction of interface optical phonons with an electron in an asymmetric quantum well, J. Phys.: Condens. Matter 4(49), 9769 (1992)
CrossRef
ADS
Google scholar
|
[4] |
F. H. Stillinger, Axiomatic basis for spaces with non integer dimension, J. Math. Phys. 18(6), 1224 (1977)
CrossRef
ADS
Google scholar
|
[5] |
X. F. He, Excitons in anisotropic solids: The model of fractional dimensional space, Phys. Rev. B 43(3), 2063 (1991)
CrossRef
ADS
Google scholar
|
[6] |
H. Mathieu, P. Lefebvre, and P. Christol, Simple analytical method for calculating exciton binding energies in semiconductor quantum wells, Phys. Rev. B 46(7), 4092 (1992)
CrossRef
ADS
Google scholar
|
[7] |
P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992)
CrossRef
ADS
Google scholar
|
[8] |
P. Christol, P. Lefebvre, and H. Mathieu, Fractionaldimensional calculation of exciton binding energies in semiconductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993)
CrossRef
ADS
Google scholar
|
[9] |
P. Lefebvre, P. Christol, H. Mathieu, and S. Glutsch, Confined excitons in semiconductors: Correlation between binding energy and spectral absorption shape, Phys. Rev. B 52(8), 5756 (1995)
CrossRef
ADS
Google scholar
|
[10] |
M. Dios-Leyva, A. Bruno Alfonso, A. Matos-Abiague, and L. E. Oliveira, Excitonic and shallow-donor states in semiconducting quantum wells: A fractional dimensional space approach, J. Phys.: Condens. Matter 9(40), 8477 (1997)
CrossRef
ADS
Google scholar
|
[11] |
A. Matos-Abiague, L. E. Oliveira, and M. de Dios-Leyva, Fractional-dimensional approach for excitons in GaAs- Ga1-xAlxAs quantum wells, Phys. Rev. B 58(7), 4072 (1998)
CrossRef
ADS
Google scholar
|
[12] |
Z. P. Wang and X. X. Liang, Electron-phonon effects on Stark shifts of excitons in parabolic quantum wells: Fractional-dimension variational approach, Phys. Lett. A 373(30), 2596 (2009)
CrossRef
ADS
Google scholar
|
[13] |
A. Matos-Abiague, A fractional-dimensional space approach to the polaron effect in quantum wells, J. Phys.: Condens. Matter 14(17), 4543 (2002)
CrossRef
ADS
Google scholar
|
[14] |
A. Matos-Abiague, Fractional-dimensional space approach for parabolic-confined polarons, Semicond. Sci. Technol. 17(2), 150 (2002)
CrossRef
ADS
Google scholar
|
[15] |
A. Matos-Abiague, Polaron effect in GaAs-Ga1-xAlx As quantum wells: A fractional-dimensional space approach, Phys. Rev. B 65, 165321 (2002)
CrossRef
ADS
Google scholar
|
[16] |
R. L. R. Suárez and A. Matos-Abiague, Fractionaldimensional polaron corrections in asymmetric GaAs-Ga1-xAlx As quantum wells, Physica E 18(4), 485 (2003)
CrossRef
ADS
Google scholar
|
[17] |
A. Thilagam and A. Matos-Abiague, Excitonic polarons in confined systems, J. Phys.: Condens. Matter 16(23), 3981 (2004)
CrossRef
ADS
Google scholar
|
[18] |
E. R. Gómez, L. E. Oliveira, and M. de Dios Leyva, Shallow impurities in semiconductor superlattices: A fractionaldimensional space approach, J. Appl. Phys. 85(8), 4045 (1999)
CrossRef
ADS
Google scholar
|
[19] |
I. D. Mikhailov, F. J. Betancur, R. A. Escorcia, and J. Sierra-Ortega, Shallow donors in semiconductor heterostructures: Fractal dimension approach and the variational principle, Phys. Rev. B 67(11), 115317 (2003)
CrossRef
ADS
Google scholar
|
[20] |
J. Kundrotas, A. Cerškus, S. Ašmontas, Steponas Asmontas, G. Valusis, B. Sherlikerl and M. P. Harrison, Excitonic and impurity-related optical transitions in Be delta-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach. Phys. Rev. B 72(23), 235322 (2005)
CrossRef
ADS
Google scholar
|
[21] |
J. Kundrotas, A. Cerškus, S. Ašmontas, G. Valušis, M. P. Halsall, E. Johannessen, and P. Harrison, Impurity-induced Huang–Rhys factor in beryllium δ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Semicond. Sci. Technol. 22(9), 1070 (2007)
CrossRef
ADS
Google scholar
|
[22] |
Z. H. Wu, H. Li, L. Yan, B. Liu, and Q. Tian, The polaron in a GaAs film deposited on AlxGa1-x As influenced by the thickness of the substrate, Superlattices Microstruct. 55, 16 (2013)
CrossRef
ADS
Google scholar
|
[23] |
Z. H. Wu, H. Li, L. Yan, B. Liu, and Q. Tian, Polaron effect in a GaAs film: The fraction-dimensional space approach, Acta Phys. Sin. 62, 097302 (2013) (in Chinese)
|
/
〈 | 〉 |