Electron-positron pair production in the low-density approximation

Nuriman Abdukerim , Zi-Liang Li , Bai-Song Xie

Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 101202

PDF (6486KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 101202 DOI: 10.1007/s11467-015-0471-3
RESEARCH ARTICLE

Electron-positron pair production in the low-density approximation

Author information +
History +
PDF (6486KB)

Abstract

Electron–positron pair creation is studied in the low-density approximation by solving the quantum Vlasov equation exactly and the mapping equation approximately. The simpler mapping equation is an approximate treatment of the quantum Vlasov equation in which the continuous external field is regarded as a series of delta kicks. Our study indicates that this new treatment is appropriate because the results of the two methods are in good agreement with each other. However, as the period number increases, interference and a complicated structure in the momentum distribution are observed. Furthermore, we also obtain the square power law relation of the number density to the applied electric field strength.

Graphical abstract

Keywords

pair production / quantum Vlasov equation / mapping equation

Cite this article

Download citation ▾
Nuriman Abdukerim, Zi-Liang Li, Bai-Song Xie. Electron-positron pair production in the low-density approximation. Front. Phys., 2015, 10(4): 101202 DOI:10.1007/s11467-015-0471-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Sauter, Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs, Z. Phys. 69(11−12), 742 (1931)

[2]

W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Z. Phys. 98(11−12), 714 (1936)

[3]

J. S. Schwinger, On Gauge invariance and vacuum polarization, Phys. Rev. 82(5), 664 (1951)

[4]

E. Brezin and C. Itzykson, Pair production in vacuum by an alternating field, Phys. Rev. D 2(7), 1191 (1970)

[5]

R. Alkofer, M. B. Hecht, C. D. Roberts, S. M. Schmidt, and D. V. Vinnik, Pair creation and an X-ray free electron laser, Phys. Rev. Lett. 87(19), 193902 (2001)

[6]

C. D. Roberts, S. M. Schmidt, and D. V. Vinnik, Quantum effects with an X-ray free-electron laser, Phys. Rev. Lett. 89(15), 153901 (2002)

[7]

A. Ringwald, Pair production from vacuum at the focus of an X-ray free electron laser, Phys. Lett. B 510(1−4), 107 (2001)

[8]

V. S. Popov, Pair production in a variable external field (Quasiclassical approximation), Sov. Phys. JETP 34, 709 (1972)

[9]

M. S. Marinov and V. S. Popov, Electron–positron pair creation from vacuum induced by variable electric field, Fortschr. Phys. 25(1−12), 373 (1977)

[10]

S. S. Bulanov, Pair production by a circularly polarized electromagnetic wave in a plasma, Phys. Rev. E 69(3), 036408 (2004)

[11]

G. V. Dunne and Q. H. Wang, Multidimensional worldline instantons, Phys. Rev. D 74(6), 065015 (2006)

[12]

R. Schützhold, H. Gies, and G. V. Dunne, Dynamically assisted Schwinger mechanism, Phys. Rev. Lett. 101(13), 130404 (2008)

[13]

B. S. Xie, M. Melike, and D. Sayipjamal, Electron–positron pair production in an elliptic polarized time varying field, Chin. Phys. Lett. 29(2), 021102 (2012)

[14]

F. Hebenstreit, R. Alkofer, G. V. Dunne, and H. Gies, Momentum signature for Schwinger pair production in short laser pulses with a subcycle structure, Phys. Rev. Lett. 102(15), 150404 (2009)

[15]

F. Hebenstreit, R. Alkofer, and H. Gies, Schwinger pair production in space- and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory, Phys. Rev. D 82(10), 105026 (2010)

[16]

O. Oluk, B. S. Xie, M. A. Bake, and S. Dulat, Electron– positron pair production in a strong asymmetric laser electric field, Front. Phys. 9(2), 157 (2014)

[17]

Z. L. Li, D. Lu, and B. S. Xie, Dynamically assisted pair production for scalar QED by two fields, Front. Phys. 10(1), 101201 (2015)

[18]

T. Heinzl, A. Ilderton, and M. Marklund, Finite size effects in simulated laser pair production, Phys. Lett. B 692(4), 250 (2010)

[19]

M. Orthaber, F. Hebenstreit, and R. Alkofer, Momentum spectra for dynamically assisted Schwinger pair production, Phys. Lett. B 698(1), 80 (2011)

[20]

C. Fey and R. Schützhold, Momentum dependence in the dynamically assisted Sauter–Schwinger effect, Phys. Rev. D 85(2), 025004 (2012)

[21]

Z. L. Li, D. Lu, and B. S. Xie, Multi-slit interference effect in the time domain for boson pair production, Phys. Rev. D 89(6), 067701 (2014)

[22]

E. Akkermans and G. V. Dunne, Ramsey fringes and timedomain multiple-slit interference from vacuum, Phys. Rev. Lett. 108(3), 030401 (2012)

[23]

A. Nuriman, B. S. Xie, Z. L. Li, and D. Sayipjamal, Enhanced electron-positron pair creation by dynamically assisted combinational fields, Phys. Lett. B 717(4−5), 465 (2012)

[24]

N. Abdukerim, Z. L. Li, and B. S. Xie, Effects of laser pulse shape and carrier envelope phase on pair production, Phys. Lett. B 726(4−5), 820 (2013)

[25]

S. Schmidt, D. B. Blaschke, G. Ropke, A. V. Prozorkevich, S. A. Smolyansky, and V. D. Toneev, Non-Makrovian effects in strong-field pair creation, Phys. Rev. D 59(9), 094005 (1999)

[26]

D. B. Blaschke, B. Kampfer, A. D. Panferov, A. V. Prozorkevich, and S. A. Smolyansky, Infulence of laser pulse parameters on the properties of ee+ palsmas created from vacuum, Contrib. Plasma Phys. 53(2), 165 (2013)

[27]

D. B. Blaschke, B. Kämpfer, S.M. Schmidt, A. D. Panferov, A. V. Prozorkevich, and S. A. Smolyansky, Properties of the electron–positron plasma created from a vacuum in a strong laser field: Quasiparticle excitations, Phys. Rev. D 88(4), 045017 (2013)

[28]

Y. Kluger, E. Mottola, and J. M. Eisenberg, Quantum Vlasov equation and its Markov limit, Phys. Rev. D 58(12), 125015 (1998)

[29]

Z. L. Li, D. Lu, B. S. Xie, L. B. Fu, J. Liu, and B. F. Shen, Enhanced pair production in strong fields by multiple-slit interference effect with dynamically assisted Schwinger mechanism, Phys. Rev. D 89(9), 093011 (2014)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (6486KB)

1351

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/