Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111)

Rui-Nan Song, Min-Hui Hu, Xiang-Rong Chen, Jian-Dong Guo

PDF(380 KB)
PDF(380 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 106802. DOI: 10.1007/s11467-015-0467-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111)

Author information +
History +

Abstract

The growth of SrMnO3 films on SrTiO3(111) substrates by pulsed laser deposition was studied and found to produce cubic and hexagonal (4H) structures in the SrMnO3 films. By adjusting the substrate temperature and oxygen pressure, the stability of the two phases was fine-tuned, resulting in the growth of cubic-SrMnO3(111) or 4H-SrMnO3(0001) film, with the 4H phase being the more stable at room temperature and ambient pressure in the bulk form. The growth temperature of the cubic phase was also further lowered relative to the bulk thermodynamics by strain at the heterointerface, and once obtained, it was stable at temperatures of up to 800 °C.

Graphical abstract

Keywords

oxide film / pulsed laser deposition / heteroepitaxy / SrMnO3

Cite this article

Download citation ▾
Rui-Nan Song, Min-Hui Hu, Xiang-Rong Chen, Jian-Dong Guo. Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111). Front. Phys., 2015, 10(3): 106802 https://doi.org/10.1007/s11467-015-0467-z

References

[1]
J. Heber, Materials science: Enter the oxides, Nature459(7243), 28 (2009)
CrossRef ADS Google scholar
[2]
D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, A thin film approach to engineering functionality into oxides, J. Am. Ceram. Soc.91(8), 2429 (2008)
CrossRef ADS Google scholar
[3]
M. Johnsson and P. Lemmens, Perovskites and thin filmscrystallography and chemistry, J. Phys.: Condens. Matter20(26), 264001 (2008)
CrossRef ADS Google scholar
[4]
D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun.2, 596 (2011)
CrossRef ADS Google scholar
[5]
Y. Wang, Z. Wang, Z. Fang, and X. Dai, Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3, arXiv: 1409.6797 (2014).
[6]
B. Gray, H. N. Lee, J. Liu, J. Chakhalian, and J. W. Freeland, Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite, Appl. Phys. Lett.97(1), 013105 (2010)
CrossRef ADS Google scholar
[7]
K. Ueda, H. Tabata, and T. Kawai, Ferromagnetism in LaFeO3–LaCrO3 superlattices, Science280(5366), 1064 (1998)
CrossRef ADS Google scholar
[8]
M. Gibert, P. Zubko, R. Scherwitzl, J. Iñiguez, and J. M. Triscone, Exchange bias in LaNiO3–LaMnO3 superlattices, Nat Mater11(3), 195 (2012)
CrossRef ADS Google scholar
[9]
E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: The key role of phase separation, Phys. Rep.344(1), 1 (2001)
CrossRef ADS Google scholar
[10]
A. M. Haghiri-Gosnet and J. P. Renard, CMR manganites: Physics, thin films and devices, J. Phys. D: Appl. Phys.36(8), R127 (2003)
CrossRef ADS Google scholar
[11]
M. Huijben, L. W. Martin, Y. H. Chu, M. B. Holcomb, P. Yu, G. Rijnders, D. H. A. Blank, and R. Ramesh, Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films, Phys. Rev. B78(9), 094413 (2008)
CrossRef ADS Google scholar
[12]
R. Sondenå, P. Ravindran, S. Stolen, T. Grande, and M. Hanfland, Electronic structure and magnetic properties of cubic and hexagonal SrMnO3, Phys. Rev. B74(14), 144102 (2006)
CrossRef ADS Google scholar
[13]
P. D. Battle, T. C. Gibb, and C. W. Jones, The structural and magnetic properties of SrMnO3: A reinvestigation, J. Solid State Chem.74(1), 60 (1988)
CrossRef ADS Google scholar
[14]
A. A. Belik, Y. Matsushita, Y. Katsuya, M. Tanaka, T. Kolodiazhnyi, M. Isobe, and E. Takayama-Muromachi, Crystal structure and magnetic properties of 6H–SrMnO3, Phys. Rev. B84(9), 094438 (2011)
CrossRef ADS Google scholar
[15]
I. N. González-Jiménez, A. Torres-Pardo, A. E. Sánchez-Peláez, Á. Gutiérrez, M. García-Hernández, J. M. González-Calbet, M. Parras, and Á. Varela, Synthesis of 4H–SrMnO3.0 nanoparticles from a molecular precursor and their topotactic reduction pathway identified at atomic scale, Chem. Mater.26(7), 2256 (2014)
CrossRef ADS Google scholar
[16]
J. H. Lee and K. M. Rabe, Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles, Phys. Rev. Lett.104(20), 207204 (2010)
CrossRef ADS Google scholar
[17]
V. M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften14(21), 477 (1926)
CrossRef ADS Google scholar
[18]
T. Negas and R. S. Roth, The system SrMnO3-x, J. Solid State Chem.1(3), 409 (1970)
CrossRef ADS Google scholar
[19]
A. Sacchetti, M. Baldini, P. Postorino, C. Martin, and A. Maignan, Raman spectroscopy on cubic and hexagonal SrMnO3, Journal of Raman Spectroscopy37(5), 591 (2006)
CrossRef ADS Google scholar
[20]
S. Kobayashi, Y. Tokuda, T. Ohnishi, T. Mizoguchi, N. Shibata, Y. Sato, Y. Ikuhara, and T. Yamamoto, Cation offstoichiometric SrMnO3 thin film grown by pulsed laser deposition, J. Mater. Sci.46(12), 4354 (2010)
CrossRef ADS Google scholar
[21]
J. Feng, X. Zhu, and J. Guo, Reconstructions on SrTiO3(111) surface tuned by Ti/Sr deposition, Surf. Sci.614, 38 (2013)
CrossRef ADS Google scholar
[22]
National Bureau of Standards Monograph 25, Section 10–Data for 84 Substances, 58 (1972)
[23]
R. A. Alberty and R. J. Silbey, <?Pub Caret1?>Physical Chemistry, 3rd Ed., John Wiley &Sons, Inc., 2001
[24]
For similicity, the horizonal axis of Fig. 3 is plotted in lgPO. The linear dependence of lnPO on 1/TS as described in Eq. (2) remains in the plot since lgPO= lge·lnPO.
[25]
M. B. Nielsen, D. Ceresoli, P. Parisiades, V. B. Prakapenka, T. Yu, Y. Wang, and M. Bremholm, Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature, Phys. Rev. B90(21), 214101 (2014)
CrossRef ADS Google scholar
[26]
L. Rormark, A. B. Morch, K. Wiik, S. Stolen, and T. Grande, Enthalpies of oxidation of CaMnO3-δ, Ca2 MnO4-δ and SrMnO3-δ deduced redox properties, Chem. Mater.13(11), 4005 (2001)
CrossRef ADS Google scholar
[27]
S. Farokhipoor, C. Magén, S. Venkatesan, J. Íñiguez, C. J. M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. Döblinger, C. Scheu, and B. Noheda, Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide, Nature515(7527), 379 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(380 KB)

Accesses

Citations

Detail

Sections
Recommended

/