Experimental system of coupled map lattices

Yu-Han Ma , Lan-Qing Huang , Chu-Min Sun , Xiao-Wen Li

Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 100504

PDF (4884KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 100504 DOI: 10.1007/s11467-015-0466-0
RESEARCH ARTICLE

Experimental system of coupled map lattices

Author information +
History +
PDF (4884KB)

Abstract

We design an optical feedback loop system consisting of a liquid-crystal spatial light modulator (SLM), a lens, polarizers, a CCD camera, and a computer. The system images every SLM pixel onto one camera pixel. The light intensity on the camera pixel shows a nonlinear relationship with the phase shift applied by the SLM. Every pixel behaves as a nonlinear map, and we can control the interaction of pixels. Therefore, this feedback loop system can be regarded as a spatially extended system. This experimental coupled map has variable dimensions, which can be up to 512 by 512. The system can be used to study high-dimensional problems that computer simulations cannot handle.

Graphical abstract

Keywords

coupled map lattices / photoelectric feedback loop

Cite this article

Download citation ▾
Yu-Han Ma, Lan-Qing Huang, Chu-Min Sun, Xiao-Wen Li. Experimental system of coupled map lattices. Front. Phys., 2015, 10(3): 100504 DOI:10.1007/s11467-015-0466-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissipative Systems, Vol. 33, World Scientific, 1986

[2]

K. Kaneko, Lyapunov analysis and information flow in coupled map lattices, Physica D23(1), 436 (1986)

[3]

K. Kaneko, Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermittency, Physica D34(1), 1 (1989)

[4]

K. Kaneko, Spatiotemporal chaos in one-and twodimensional coupled map lattices, Physica D37(1), 60 (1989)

[5]

G. Hu and Z. L. Qu, Controlling spatiotemporal chaos in coupled map lattice systems, Phys. Rev. Lett. 72(1), 68 (1994)

[6]

P. M. Gade and C.-K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E62(5), 6409 (2000)

[7]

O. N. Björnstad, R. A. Ims, and X. Lambin, Spatial population dynamics: analyzing patterns and processes of population synchrony, Trends in Ecology & Evolution14(11), 427 (1999)

[8]

J. Garcia-Ojalvo and R. Roy, Spatiotemporal communication with synchronized optical chaos, Phys. Rev. Lett. 86(22), 5204 (2001)

[9]

H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series, Phys. Lett. A185(1), 77 (1994)

[10]

L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Communications5, 4079 (2014)

[11]

S. Liu and M. Zhan, Clustering versus non-clustering phase synchronizations, Chaos24, 013104 (2014)

[12]

M. Zhan, S. Liu, and Z. He, Matching rules for collective behaviors on complex networks: Optimal configurations for vibration frequencies of networked harmonic oscillators, PloS ONE8(12), e82161 (2013)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (4884KB)

974

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/