Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator
Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro
Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator
New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen–Cooper–Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.
topological insulator / Weyl semimetal / superconductivity / quantum criticality
[1] |
S. Q. Shen, Topological Insulators, Heidelberg: Springer-Verlag, 2012
CrossRef
ADS
Google scholar
|
[2] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[3] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys.82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[4] |
M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge: Cambridge University Press, 2012
CrossRef
ADS
Google scholar
|
[5] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[6] |
A. M. Black-Schaffer and S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite, Phys. Rev. B75(13), 134512 (2007)
CrossRef
ADS
Google scholar
|
[7] |
S. Pathak, V. B. Shenoy, and G. Baskaran, Possible hightemperature superconducting state with a d+id pairing symmetry in doped graphene, Phys. Rev. B81(8), 085431 (2010)
CrossRef
ADS
Google scholar
|
[8] |
R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nat. Phys.8(2), 158 (2012)
CrossRef
ADS
Google scholar
|
[9] |
B. Roy and I. F. Herbut, Unconventional superconductivity on honeycomb lattice: Theory of Kekule order parameter, Phys. Rev. B82(3), 035429 (2010)
CrossRef
ADS
Google scholar
|
[10] |
D. V. Khveshchenko, Ghost excitonic insulator transition in layered graphite, Phys. Rev. Lett.87(24), 246802 (2001)
CrossRef
ADS
Google scholar
|
[11] |
O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Gap generation and semimetal–insulator phase transition in graphene, Phys. Rev. B81(7), 075429 (2010)
CrossRef
ADS
Google scholar
|
[12] |
B. Rosenstein and B. J. Warr, Dynamical symmetry breaking in 2+1 dimensions, Phys. Lett. B218(4), 465 (1989)
CrossRef
ADS
Google scholar
|
[13] |
M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I. Polikarpov, Monte Carlo study of the semimetal–insulator phase transition in monolayer graphene with a realistic interelectron interaction potential, Phys. Rev. Lett.111(5), 056801 (2013)
CrossRef
ADS
Google scholar
|
[14] |
J. Martin, B. E. Feldman, R. T. Weitz, M. T. Allen, and A. Yacoby, Local compressibility measurements of correlated states in suspended bilayer graphene, Phys. Rev. Lett.105(25), 256806 (2010)
CrossRef
ADS
Google scholar
|
[15] |
R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Broken-symmetry states in doubly gated suspended bilayer graphene, Science330(6005), 812 (2010)
CrossRef
ADS
Google scholar
|
[16] |
F. Freitag, J. Trbovic, M. Weiss, and C. Schonenberger, Spontaneously gapped ground state in suspended bilayer graphene, Phys. Rev. Lett.108(7), 076602 (2012)
CrossRef
ADS
Google scholar
|
[17] |
L. Velasco, W. Jing, Y. Bao, P. Lee, V. Kratz, M. Aji, C. N. Bockrath, C. Lau, R. Varma, D. Stillwell, F. Smirnov, J. Zhang, J. Jung, and A. H. MacDonald, Transport spectroscopy of symmetry-broken insulating states in bilayer graphene, Nat. Nanotechnol.7(3), 156 (2012)
CrossRef
ADS
Google scholar
|
[18] |
V. M. Nabutovskii and B. Ya. Shapiro, Superconductivity in a system of interacting localized and delocalized electrons, Zh. Eksp. Teor. Fiz.84, 422 (1983) [Sov. Phys. JETP57(1), 245 (1983)]
|
[19] |
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys.78(1), 17 (2006)
CrossRef
ADS
Google scholar
|
[20] |
J. Orenstein and A. J. Millis, Advances in the physics of high-temperature superconductivity, Science288(5465), 468 (2000)
CrossRef
ADS
Google scholar
|
[21] |
J. Singleton and C. Mielke, Quasi-two-dimensional organic superconductors: A review, Contemp. Phys.43(2), 63 (2002)
CrossRef
ADS
Google scholar
|
[22] |
I. N. Khlyustikov and A. I. Buzdin, Twinning-plane superconductivity, Adv. Phys.36(3), 271 (1987)
CrossRef
ADS
Google scholar
|
[23] |
X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F. C. Chou, C. Chamon, and M. El-Batanouny, Interaction of phonons and Dirac fermions on the surface of Bi2Se3: A strong Kohn anomaly, Phys. Rev. Lett.107(18), 186102 (2011)
CrossRef
ADS
Google scholar
|
[24] |
C.W. Luo, H. J. Wang, S. A. Ku, H. J. Chen, T. T. Yeh, J. Y. Lin, K. H. Wu, J. Y. Juang, B. L. Young, T. Kobayashi, C. M. Cheng, C. H. Chen, K. D. Tsuei, R. Sankar, F. C. Chou, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, Yu. M. Andreev, and G. D. Gu, Snapshots of Dirac fermions near the Dirac point in topological insulators, Nano Lett.13(12), 5797 (2013)
CrossRef
ADS
Google scholar
|
[25] |
X. Zhu, L. Santos, C. Howard, R. Sankar, F. C. Chou, C. Chamon, and M. El-Batanouny, Electron–phonon coupling on the surface of the topological insulator Bi2Se3 determined from surface-phonon dispersion measurements, Phys. Rev. Lett.108(18), 185501 (2012)
CrossRef
ADS
Google scholar
|
[26] |
S. Das Sarma and Q. Z. Li, Many-body effects and possible superconductivity in the two-dimensional metallic surface states of three-dimensional topological insulators, Phys. Rev. B88, 081404(R) (2013)
|
[27] |
Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electronphonon coupling on the surface of the topological insulator Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett.108(18), 187001 (2012)
CrossRef
ADS
Google scholar
|
[28] |
V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron-phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B88(7), 075432 (2013)
CrossRef
ADS
Google scholar
|
[29] |
M. Cheng, R. M. Lutchyn, and S. Das Sarma, Topological protection of Majorana qubits, Phys. Rev. B85(16), 165124 (2012)
CrossRef
ADS
Google scholar
|
[30] |
D. Li, B. Rosenstein, B. Ya. Shapiro, and I. Shapiro, Quantum critical point in the superconducting transition on the surface of a topological insulator, Phys. Rev. B90(5), 054517 (2014)
CrossRef
ADS
Google scholar
|
[31] |
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys.5(6), 438 (2009)
CrossRef
ADS
Google scholar
|
[32] |
J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Bulk band gap and surface state conduction observed in voltagetuned crystals of the topological insulator Bi2Se3, Phys. Rev. Lett.106(19), 196801 (2011)
CrossRef
ADS
Google scholar
|
[33] |
D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3, Nat. Phys.8(6), 459 (2012)
CrossRef
ADS
Google scholar
|
[34] |
C. K. Lu and I. F. Herbut, Pairing symmetry and vortex zero mode for superconducting Dirac fermions, Phys. Rev. B82(14), 144505 (2010)
CrossRef
ADS
Google scholar
|
[35] |
M. Sato and S. Fujimoto, Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics, Phys. Rev. B79(9), 094504 (2009)
CrossRef
ADS
Google scholar
|
[36] |
S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 2011
CrossRef
ADS
Google scholar
|
[37] |
I. Herbut, A Modern Approach to Critical Phenomena, Cambridge: Cambridge University Press, 2010
|
[38] |
D. J. Amit, Field Theory, The Renormalization Group and Critical Phenomena, London: World Scientific, 2005
CrossRef
ADS
Google scholar
|
[39] |
B. Rosenstein, B. J. Warr, and S. H. Park, Four-fermion theory is renormalizable in 2+1 dimensions, Phys. Rev. Lett.62(13), 1433 (1989)
CrossRef
ADS
Google scholar
|
[40] |
B. Rosenstein, B. J. Warr, and S. H. Park, Dynamical symmetry breaking in four-fermion interaction models, Phys. Rep.205(2), 59 (1991)
CrossRef
ADS
Google scholar
|
[41] |
G. Gat, A. Kovner, and B. Rosenstein, Chiral phase transitions in d= 3 and renormalizability of four-Fermi interactions, Nucl. Phys. B385(1-2), 76 (1992)
CrossRef
ADS
Google scholar
|
[42] |
B. Rosenstein, Hoi-Lai Yu, and A. Kovner, Critical exponents of new universality classes, Phys. Lett. B314(3-4), 381 (1993)
CrossRef
ADS
Google scholar
|
[43] |
R. Schneider, A. G. Zaitsev, D. Fuchs, and H. v. Löhneysen, Superconductor–insulator quantum phase transition in disordered FeSe thin films, Phys. Rev. Lett.108(25), 257003 (2012)
CrossRef
ADS
Google scholar
|
[44] |
V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys.84(3), 1067 (2012)
CrossRef
ADS
Google scholar
|
[45] |
H. A. Fertig, Energy spectrum of a layered system in a strong magnetic field, Phys. Rev. B40(2), 1087 (1989)
CrossRef
ADS
Google scholar
|
[46] |
S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Many-body integer quantum Hall effect: Evidence for new phase transitions, Phys. Rev. Lett.72(5), 728 (1994)
CrossRef
ADS
Google scholar
|
[47] |
I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet, Phys. Rev. Lett.84(25), 5808 (2000)
CrossRef
ADS
Google scholar
|
[48] |
I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Observation of a linearly dispersing collective mode in a quantum Hall ferromagnet, Phys. Rev. Lett.87(3), 036803 (2001)
CrossRef
ADS
Google scholar
|
[49] |
Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, and W. Wegscheider, Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers, Phys. Rev. Lett.104(11), 116802 (2010)
CrossRef
ADS
Google scholar
|
[50] |
A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Exciton transport and Andreev reflection in a bilayer quantum Hall system, Phys. Rev. Lett.106(23), 236807 (2011)
CrossRef
ADS
Google scholar
|
[51] |
X. Huang, W. Dietsche, M. Hauser, and K. von Klitzing, Coupling of Josephson currents in quantum Hall bilayers, Phys. Rev. Lett.109(15), 156802 (2012)
CrossRef
ADS
Google scholar
|
[52] |
B. Seradjeh, J. E. Moore, and M. Franz, Exciton condensation and charge fractionalization in a topological insulator film, Phys. Rev. Lett.103(6), 066402 (2009)
CrossRef
ADS
Google scholar
|
[53] |
Z. Wang, N. Hao, Z. G. Fu, and P. Zhang, Excitonic condensation for the surface states of topological insulator bilayers, New J. Phys.14(6), 063010 (2012)
CrossRef
ADS
Google scholar
|
[54] |
D. K. Efimkin, Yu. E. Lozovik, and A. A. Sokolik, Electron– hole pairing in a topological insulator thin film, Phys. Rev. B86(11), 115436 (2012)
CrossRef
ADS
Google scholar
|
[55] |
S. Rist, A. A. Varlamov, A. H. MacDonald, R. Fazio, and M. Polini, Photoemission spectra of massless Dirac fermions on the verge of exciton condensation, Phys. Rev. B87(7), 075418 (2013)
CrossRef
ADS
Google scholar
|
[56] |
D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys.7(1), 31 (2012)
CrossRef
ADS
Google scholar
|
[57] |
L. Fu and E. Berg, Odd-parity topological superconductors: Theory and application to CuxBi2Se3, Phys. Rev. Lett.105(9), 097001 (2010)
CrossRef
ADS
Google scholar
|
[58] |
B. Rosenstein, B. Ya. Shapiro, D. Li, and I. Shapiro, Triplet superconductivity in 3D Dirac semi-metal due to exchange interaction, J. Phys.: Condens. Matter27(2), 025701 (2015)
CrossRef
ADS
Google scholar
|
[59] |
A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, New York: Pergamon Press, 1965
|
[60] |
E. M. Lifshits and L. P. Pitaeskii, Course of Theoretical Physics (Vol. 9): Statistical Physics, Part 2, Oxford: Prgamon Press, 1980
|
[61] |
J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D10(8), 2428 (1974)
CrossRef
ADS
Google scholar
|
[62] |
R. Haussmann, Self-Consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems, Springer, 1999
|
[63] |
Z. J. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. M. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb), Phys. Rev. B85(19), 195320 (2012)
CrossRef
ADS
Google scholar
|
[64] |
P. Hosur, X. Dai, Z. Fang, and X. L. Qi, Time-reversalinvariant topological superconductivity in doped Weyl semimetals, Phys. Rev. B90(4), 045130 (2014)
CrossRef
ADS
Google scholar
|
[65] |
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Ac conductivity of graphene: From tight-binding model to 2+1- dimensional quantum electrodynamics, Int. J. Mod. Phys. B21(27), 4611 (2007)
CrossRef
ADS
Google scholar
|
[66] |
A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Zh. Eksp. Teor. Fiz.32, 1442 (1957) [Sov. Phys. JETP5(6), 1174 (1957)]
|
[67] |
J. D. Ketterson and S. N. Song, Superconductivity, Cambridge: Cambridge University Press, 1999
CrossRef
ADS
Google scholar
|
[68] |
B. Rosenstein and D. Li, Ginzburg–Landau theory of type II superconductors in magnetic field, Rev. Mod. Phys.82(1), 109 (2010)
CrossRef
ADS
Google scholar
|
[69] |
I. F. Herbut, V. Juricic, and O. Vafek, Relativistic Mott criticality in graphene, Phys. Rev. B80(7), 075432 (2009)
CrossRef
ADS
Google scholar
|
[70] |
L. Janssen and I. F. Herbut, Antiferromagnetic critical point on graphene’s honeycomb lattice: A functional renormalization group approach, Phys. Rev. B89(20), 205403 (2014)
CrossRef
ADS
Google scholar
|
[71] |
L. Del Debbio, S. J. Hands, and J. C. Mehegan, Threedimensional thirring model for small Nf, Nucl. Phys. B502(1-2), 269 (1997)
CrossRef
ADS
Google scholar
|
[72] |
I. M. Barbour, N. Psycharis, E. Focht, W. Franzki, and J. Jersak, Strongly coupled lattice gauge theory with dynamical fermion mass generation in three dimensions, Phys. Rev. D58(7), 074507 (1998)
CrossRef
ADS
Google scholar
|
[73] |
S. Chandrasekharan and A. Li, Fermion bag solutions to some sign problems in four-fermion field theories, Phys. Rev. D85(9), 091502 (2012)
CrossRef
ADS
Google scholar
|
[74] |
S. Chandrasekharan, Solutions to sign problems in lattice Yukawa models, Phys. Rev. D86(2), 021701 (2012)
CrossRef
ADS
Google scholar
|
[75] |
S. Chandrasekharan and Anyi Li, Quantum critical behavior in three dimensional lattice Gross–Neveu models, Phys. Rev. D88, 021701(R) (2013)
|
[76] |
F. F. Assaad and I. F. Herbut, Pinning the order: The nature of quantum criticality in the Hubbard model on honeycomb lattice, Phys. Rev. X3, 031010 (2013)
CrossRef
ADS
Google scholar
|
[77] |
S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice, Scientific Reports2, 992 (2012)
CrossRef
ADS
Google scholar
|
[78] |
B. W. Lee, Chiral Dynamics, New York: Gordon and Breach, 1972
|
[79] |
Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electron– phonon coupling on the surface of the topological insula-tor Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett.108(18), 187001 (2012)
CrossRef
ADS
Google scholar
|
[80] |
V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron–phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B88(7), 075432 (2013)
CrossRef
ADS
Google scholar
|
[81] |
Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator, Phys. Rev. Lett.104(5), 057001 (2010)
CrossRef
ADS
Google scholar
|
[82] |
L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of topological order in a superconducting doped topological insulator, Nat. Phys.6(11), 855 (2010)
CrossRef
ADS
Google scholar
|
[83] |
G. Koren, T. Kirzhner, E. Lahoud, K. Chashka, and A. Kanigel, Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zero-energy bound state possibly due to Majorana fermions, Phys. Rev. B84(22), 224521 (2011)
CrossRef
ADS
Google scholar
|
[84] |
P. H. Le, W.-Y. Tzeng, H.-J. Chen, C. W. Luo, J.- Y. Lin, and J. Leu, Superconductivity in textured Bi clusters/Bi2Te3 films, APL Mat. 2, 096105 (2014)
CrossRef
ADS
Google scholar
|
[85] |
K. Kirshenbaum, P. S. Syers, A. P. Hope, N. P. Butch, J. R. Jeffries, S. T. Weir, J. J. Hamlin, M. B. Maple, Y. K. Vohra, and J. Paglione, Pressure-induced unconventional superconducting phase in the topological insulator Bi2Se3, Phys. Rev. Lett.111(8), 087001 (2013)
CrossRef
ADS
Google scholar
|
[86] |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science343(6173), 864 (2014)
CrossRef
ADS
Google scholar
|
[87] |
S. Y. Xu, C. Liu, S. K. Kushwaha, T. R. Chang, J. W. Krizan, R. Sankar, C. M. Polley, J. Adell, T. Balasubramanian, K. Miyamoto, N. Alidoust, G. Bian, M. Neupane, I. Belopolski, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, F. C. Chou, T. Okuda, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi, arXiv: 1312.7624 (2013)
|
[88] |
M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, P. Neugebauer, C. Faugeras, A. L. Barra, G. Martinez, and M. Potemski, Observation of three-dimensional massless Kane fermions in a zinc-blende crystal, Nat. Phys.10(3), 233 (2014)
CrossRef
ADS
Google scholar
|
[89] |
G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107(18), 186806 (2011)
CrossRef
ADS
Google scholar
|
[90] |
Z. J. Wang, H. M. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B88(12), 125427 (2013)
CrossRef
ADS
Google scholar
|
[91] |
M. Neupane, S. Y. Xu, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. C. Chou, and M. Z. Hasan, Observation of quantumtunneling modulated spin texture in ultrathin topological insulator Bi2Se3 films, Nat. Commun. 05, 3786 (2014), arXiv: 1404.2830v1
CrossRef
ADS
Google scholar
|
[92] |
Y. Fuseya, M. Ogata, and H. Fukuyama, Interband contributions from the magnetic field on Hall effects for Dirac electrons in bismuth, Phys. Rev. Lett.102(6), 066601 (2009)
CrossRef
ADS
Google scholar
|
[93] |
P. Hosur, S. A. Parameswaran, and A. Vishwanath, Charge transport in Weyl semimetals, Phys. Rev. Lett.108(4), 046602 (2012)
CrossRef
ADS
Google scholar
|
[94] |
T. Kariyado and M. Ogata, Three-dimensional Dirac electrons at the Fermi energy in cubic inverse perovskites: Ca3PbO and its family, J. Phys. Soc. Jpn.80(8), 083704 (2011)
CrossRef
ADS
Google scholar
|
[95] |
T. Kariyado and M. Ogata, Low-energy effective hamiltonian and the surface states of Ca3PbO, J. Phys. Soc. Jpn.81(6), 064701 (2012)
CrossRef
ADS
Google scholar
|
[96] |
P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL (Europhysics Letters)97(6), 67004 (2012)
CrossRef
ADS
Google scholar
|
[97] |
B. Rosenstein and M. Lewkowicz, Dynamics of electric transport in interacting Weyl semimetals, Phys. Rev. B88(4), 045108 (2013)
CrossRef
ADS
Google scholar
|
[98] |
M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Noncentrosymmetric superconductor with a bulk threedimensional Dirac cone gapped by strong spin–orbit coupling, Phys. Rev. B89(2), 020505 (2014) (R)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |