Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator

Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro

PDF(431 KB)
PDF(431 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 107402. DOI: 10.1007/s11467-015-0465-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator

Author information +
History +

Abstract

New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen–Cooper–Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.

Graphical abstract

Keywords

topological insulator / Weyl semimetal / superconductivity / quantum criticality

Cite this article

Download citation ▾
Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator. Front. Phys., 2015, 10(3): 107402 https://doi.org/10.1007/s11467-015-0465-1

References

[1]
S. Q. Shen, Topological Insulators, Heidelberg: Springer-Verlag, 2012
CrossRef ADS Google scholar
[2]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
CrossRef ADS Google scholar
[3]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys.82(4), 3045 (2010)
CrossRef ADS Google scholar
[4]
M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge: Cambridge University Press, 2012
CrossRef ADS Google scholar
[5]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81(1), 109 (2009)
CrossRef ADS Google scholar
[6]
A. M. Black-Schaffer and S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite, Phys. Rev. B75(13), 134512 (2007)
CrossRef ADS Google scholar
[7]
S. Pathak, V. B. Shenoy, and G. Baskaran, Possible hightemperature superconducting state with a d+id pairing symmetry in doped graphene, Phys. Rev. B81(8), 085431 (2010)
CrossRef ADS Google scholar
[8]
R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nat. Phys.8(2), 158 (2012)
CrossRef ADS Google scholar
[9]
B. Roy and I. F. Herbut, Unconventional superconductivity on honeycomb lattice: Theory of Kekule order parameter, Phys. Rev. B82(3), 035429 (2010)
CrossRef ADS Google scholar
[10]
D. V. Khveshchenko, Ghost excitonic insulator transition in layered graphite, Phys. Rev. Lett.87(24), 246802 (2001)
CrossRef ADS Google scholar
[11]
O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Gap generation and semimetal–insulator phase transition in graphene, Phys. Rev. B81(7), 075429 (2010)
CrossRef ADS Google scholar
[12]
B. Rosenstein and B. J. Warr, Dynamical symmetry breaking in 2+1 dimensions, Phys. Lett. B218(4), 465 (1989)
CrossRef ADS Google scholar
[13]
M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I. Polikarpov, Monte Carlo study of the semimetal–insulator phase transition in monolayer graphene with a realistic interelectron interaction potential, Phys. Rev. Lett.111(5), 056801 (2013)
CrossRef ADS Google scholar
[14]
J. Martin, B. E. Feldman, R. T. Weitz, M. T. Allen, and A. Yacoby, Local compressibility measurements of correlated states in suspended bilayer graphene, Phys. Rev. Lett.105(25), 256806 (2010)
CrossRef ADS Google scholar
[15]
R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Broken-symmetry states in doubly gated suspended bilayer graphene, Science330(6005), 812 (2010)
CrossRef ADS Google scholar
[16]
F. Freitag, J. Trbovic, M. Weiss, and C. Schonenberger, Spontaneously gapped ground state in suspended bilayer graphene, Phys. Rev. Lett.108(7), 076602 (2012)
CrossRef ADS Google scholar
[17]
L. Velasco, W. Jing, Y. Bao, P. Lee, V. Kratz, M. Aji, C. N. Bockrath, C. Lau, R. Varma, D. Stillwell, F. Smirnov, J. Zhang, J. Jung, and A. H. MacDonald, Transport spectroscopy of symmetry-broken insulating states in bilayer graphene, Nat. Nanotechnol.7(3), 156 (2012)
CrossRef ADS Google scholar
[18]
V. M. Nabutovskii and B. Ya. Shapiro, Superconductivity in a system of interacting localized and delocalized electrons, Zh. Eksp. Teor. Fiz.84, 422 (1983) [Sov. Phys. JETP57(1), 245 (1983)]
[19]
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys.78(1), 17 (2006)
CrossRef ADS Google scholar
[20]
J. Orenstein and A. J. Millis, Advances in the physics of high-temperature superconductivity, Science288(5465), 468 (2000)
CrossRef ADS Google scholar
[21]
J. Singleton and C. Mielke, Quasi-two-dimensional organic superconductors: A review, Contemp. Phys.43(2), 63 (2002)
CrossRef ADS Google scholar
[22]
I. N. Khlyustikov and A. I. Buzdin, Twinning-plane superconductivity, Adv. Phys.36(3), 271 (1987)
CrossRef ADS Google scholar
[23]
X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F. C. Chou, C. Chamon, and M. El-Batanouny, Interaction of phonons and Dirac fermions on the surface of Bi2Se3: A strong Kohn anomaly, Phys. Rev. Lett.107(18), 186102 (2011)
CrossRef ADS Google scholar
[24]
C.W. Luo, H. J. Wang, S. A. Ku, H. J. Chen, T. T. Yeh, J. Y. Lin, K. H. Wu, J. Y. Juang, B. L. Young, T. Kobayashi, C. M. Cheng, C. H. Chen, K. D. Tsuei, R. Sankar, F. C. Chou, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, Yu. M. Andreev, and G. D. Gu, Snapshots of Dirac fermions near the Dirac point in topological insulators, Nano Lett.13(12), 5797 (2013)
CrossRef ADS Google scholar
[25]
X. Zhu, L. Santos, C. Howard, R. Sankar, F. C. Chou, C. Chamon, and M. El-Batanouny, Electron–phonon coupling on the surface of the topological insulator Bi2Se3 determined from surface-phonon dispersion measurements, Phys. Rev. Lett.108(18), 185501 (2012)
CrossRef ADS Google scholar
[26]
S. Das Sarma and Q. Z. Li, Many-body effects and possible superconductivity in the two-dimensional metallic surface states of three-dimensional topological insulators, Phys. Rev. B88, 081404(R) (2013)
[27]
Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electronphonon coupling on the surface of the topological insulator Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett.108(18), 187001 (2012)
CrossRef ADS Google scholar
[28]
V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron-phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B88(7), 075432 (2013)
CrossRef ADS Google scholar
[29]
M. Cheng, R. M. Lutchyn, and S. Das Sarma, Topological protection of Majorana qubits, Phys. Rev. B85(16), 165124 (2012)
CrossRef ADS Google scholar
[30]
D. Li, B. Rosenstein, B. Ya. Shapiro, and I. Shapiro, Quantum critical point in the superconducting transition on the surface of a topological insulator, Phys. Rev. B90(5), 054517 (2014)
CrossRef ADS Google scholar
[31]
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys.5(6), 438 (2009)
CrossRef ADS Google scholar
[32]
J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Bulk band gap and surface state conduction observed in voltagetuned crystals of the topological insulator Bi2Se3, Phys. Rev. Lett.106(19), 196801 (2011)
CrossRef ADS Google scholar
[33]
D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3, Nat. Phys.8(6), 459 (2012)
CrossRef ADS Google scholar
[34]
C. K. Lu and I. F. Herbut, Pairing symmetry and vortex zero mode for superconducting Dirac fermions, Phys. Rev. B82(14), 144505 (2010)
CrossRef ADS Google scholar
[35]
M. Sato and S. Fujimoto, Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics, Phys. Rev. B79(9), 094504 (2009)
CrossRef ADS Google scholar
[36]
S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 2011
CrossRef ADS Google scholar
[37]
I. Herbut, A Modern Approach to Critical Phenomena, Cambridge: Cambridge University Press, 2010
[38]
D. J. Amit, Field Theory, The Renormalization Group and Critical Phenomena, London: World Scientific, 2005
CrossRef ADS Google scholar
[39]
B. Rosenstein, B. J. Warr, and S. H. Park, Four-fermion theory is renormalizable in 2+1 dimensions, Phys. Rev. Lett.62(13), 1433 (1989)
CrossRef ADS Google scholar
[40]
B. Rosenstein, B. J. Warr, and S. H. Park, Dynamical symmetry breaking in four-fermion interaction models, Phys. Rep.205(2), 59 (1991)
CrossRef ADS Google scholar
[41]
G. Gat, A. Kovner, and B. Rosenstein, Chiral phase transitions in d= 3 and renormalizability of four-Fermi interactions, Nucl. Phys. B385(1-2), 76 (1992)
CrossRef ADS Google scholar
[42]
B. Rosenstein, Hoi-Lai Yu, and A. Kovner, Critical exponents of new universality classes, Phys. Lett. B314(3-4), 381 (1993)
CrossRef ADS Google scholar
[43]
R. Schneider, A. G. Zaitsev, D. Fuchs, and H. v. Löhneysen, Superconductor–insulator quantum phase transition in disordered FeSe thin films, Phys. Rev. Lett.108(25), 257003 (2012)
CrossRef ADS Google scholar
[44]
V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys.84(3), 1067 (2012)
CrossRef ADS Google scholar
[45]
H. A. Fertig, Energy spectrum of a layered system in a strong magnetic field, Phys. Rev. B40(2), 1087 (1989)
CrossRef ADS Google scholar
[46]
S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Many-body integer quantum Hall effect: Evidence for new phase transitions, Phys. Rev. Lett.72(5), 728 (1994)
CrossRef ADS Google scholar
[47]
I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet, Phys. Rev. Lett.84(25), 5808 (2000)
CrossRef ADS Google scholar
[48]
I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Observation of a linearly dispersing collective mode in a quantum Hall ferromagnet, Phys. Rev. Lett.87(3), 036803 (2001)
CrossRef ADS Google scholar
[49]
Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, and W. Wegscheider, Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers, Phys. Rev. Lett.104(11), 116802 (2010)
CrossRef ADS Google scholar
[50]
A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Exciton transport and Andreev reflection in a bilayer quantum Hall system, Phys. Rev. Lett.106(23), 236807 (2011)
CrossRef ADS Google scholar
[51]
X. Huang, W. Dietsche, M. Hauser, and K. von Klitzing, Coupling of Josephson currents in quantum Hall bilayers, Phys. Rev. Lett.109(15), 156802 (2012)
CrossRef ADS Google scholar
[52]
B. Seradjeh, J. E. Moore, and M. Franz, Exciton condensation and charge fractionalization in a topological insulator film, Phys. Rev. Lett.103(6), 066402 (2009)
CrossRef ADS Google scholar
[53]
Z. Wang, N. Hao, Z. G. Fu, and P. Zhang, Excitonic condensation for the surface states of topological insulator bilayers, New J. Phys.14(6), 063010 (2012)
CrossRef ADS Google scholar
[54]
D. K. Efimkin, Yu. E. Lozovik, and A. A. Sokolik, Electron– hole pairing in a topological insulator thin film, Phys. Rev. B86(11), 115436 (2012)
CrossRef ADS Google scholar
[55]
S. Rist, A. A. Varlamov, A. H. MacDonald, R. Fazio, and M. Polini, Photoemission spectra of massless Dirac fermions on the verge of exciton condensation, Phys. Rev. B87(7), 075418 (2013)
CrossRef ADS Google scholar
[56]
D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys.7(1), 31 (2012)
CrossRef ADS Google scholar
[57]
L. Fu and E. Berg, Odd-parity topological superconductors: Theory and application to CuxBi2Se3, Phys. Rev. Lett.105(9), 097001 (2010)
CrossRef ADS Google scholar
[58]
B. Rosenstein, B. Ya. Shapiro, D. Li, and I. Shapiro, Triplet superconductivity in 3D Dirac semi-metal due to exchange interaction, J. Phys.: Condens. Matter27(2), 025701 (2015)
CrossRef ADS Google scholar
[59]
A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, New York: Pergamon Press, 1965
[60]
E. M. Lifshits and L. P. Pitaeskii, Course of Theoretical Physics (Vol. 9): Statistical Physics, Part 2, Oxford: Prgamon Press, 1980
[61]
J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D10(8), 2428 (1974)
CrossRef ADS Google scholar
[62]
R. Haussmann, Self-Consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems, Springer, 1999
[63]
Z. J. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. M. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb), Phys. Rev. B85(19), 195320 (2012)
CrossRef ADS Google scholar
[64]
P. Hosur, X. Dai, Z. Fang, and X. L. Qi, Time-reversalinvariant topological superconductivity in doped Weyl semimetals, Phys. Rev. B90(4), 045130 (2014)
CrossRef ADS Google scholar
[65]
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Ac conductivity of graphene: From tight-binding model to 2+1- dimensional quantum electrodynamics, Int. J. Mod. Phys. B21(27), 4611 (2007)
CrossRef ADS Google scholar
[66]
A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Zh. Eksp. Teor. Fiz.32, 1442 (1957) [Sov. Phys. JETP5(6), 1174 (1957)]
[67]
J. D. Ketterson and S. N. Song, Superconductivity, Cambridge: Cambridge University Press, 1999
CrossRef ADS Google scholar
[68]
B. Rosenstein and D. Li, Ginzburg–Landau theory of type II superconductors in magnetic field, Rev. Mod. Phys.82(1), 109 (2010)
CrossRef ADS Google scholar
[69]
I. F. Herbut, V. Juricic, and O. Vafek, Relativistic Mott criticality in graphene, Phys. Rev. B80(7), 075432 (2009)
CrossRef ADS Google scholar
[70]
L. Janssen and I. F. Herbut, Antiferromagnetic critical point on graphene’s honeycomb lattice: A functional renormalization group approach, Phys. Rev. B89(20), 205403 (2014)
CrossRef ADS Google scholar
[71]
L. Del Debbio, S. J. Hands, and J. C. Mehegan, Threedimensional thirring model for small Nf, Nucl. Phys. B502(1-2), 269 (1997)
CrossRef ADS Google scholar
[72]
I. M. Barbour, N. Psycharis, E. Focht, W. Franzki, and J. Jersak, Strongly coupled lattice gauge theory with dynamical fermion mass generation in three dimensions, Phys. Rev. D58(7), 074507 (1998)
CrossRef ADS Google scholar
[73]
S. Chandrasekharan and A. Li, Fermion bag solutions to some sign problems in four-fermion field theories, Phys. Rev. D85(9), 091502 (2012)
CrossRef ADS Google scholar
[74]
S. Chandrasekharan, Solutions to sign problems in lattice Yukawa models, Phys. Rev. D86(2), 021701 (2012)
CrossRef ADS Google scholar
[75]
S. Chandrasekharan and Anyi Li, Quantum critical behavior in three dimensional lattice Gross–Neveu models, Phys. Rev. D88, 021701(R) (2013)
[76]
F. F. Assaad and I. F. Herbut, Pinning the order: The nature of quantum criticality in the Hubbard model on honeycomb lattice, Phys. Rev. X3, 031010 (2013)
CrossRef ADS Google scholar
[77]
S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice, Scientific Reports2, 992 (2012)
CrossRef ADS Google scholar
[78]
B. W. Lee, Chiral Dynamics, New York: Gordon and Breach, 1972
[79]
Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electron– phonon coupling on the surface of the topological insula-tor Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett.108(18), 187001 (2012)
CrossRef ADS Google scholar
[80]
V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron–phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B88(7), 075432 (2013)
CrossRef ADS Google scholar
[81]
Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator, Phys. Rev. Lett.104(5), 057001 (2010)
CrossRef ADS Google scholar
[82]
L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of topological order in a superconducting doped topological insulator, Nat. Phys.6(11), 855 (2010)
CrossRef ADS Google scholar
[83]
G. Koren, T. Kirzhner, E. Lahoud, K. Chashka, and A. Kanigel, Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zero-energy bound state possibly due to Majorana fermions, Phys. Rev. B84(22), 224521 (2011)
CrossRef ADS Google scholar
[84]
P. H. Le, W.-Y. Tzeng, H.-J. Chen, C. W. Luo, J.- Y. Lin, and J. Leu, Superconductivity in textured Bi clusters/Bi2Te3 films, APL Mat. 2, 096105 (2014)
CrossRef ADS Google scholar
[85]
K. Kirshenbaum, P. S. Syers, A. P. Hope, N. P. Butch, J. R. Jeffries, S. T. Weir, J. J. Hamlin, M. B. Maple, Y. K. Vohra, and J. Paglione, Pressure-induced unconventional superconducting phase in the topological insulator Bi2Se3, Phys. Rev. Lett.111(8), 087001 (2013)
CrossRef ADS Google scholar
[86]
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science343(6173), 864 (2014)
CrossRef ADS Google scholar
[87]
S. Y. Xu, C. Liu, S. K. Kushwaha, T. R. Chang, J. W. Krizan, R. Sankar, C. M. Polley, J. Adell, T. Balasubramanian, K. Miyamoto, N. Alidoust, G. Bian, M. Neupane, I. Belopolski, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, F. C. Chou, T. Okuda, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi, arXiv: 1312.7624 (2013)
[88]
M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, P. Neugebauer, C. Faugeras, A. L. Barra, G. Martinez, and M. Potemski, Observation of three-dimensional massless Kane fermions in a zinc-blende crystal, Nat. Phys.10(3), 233 (2014)
CrossRef ADS Google scholar
[89]
G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107(18), 186806 (2011)
CrossRef ADS Google scholar
[90]
Z. J. Wang, H. M. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B88(12), 125427 (2013)
CrossRef ADS Google scholar
[91]
M. Neupane, S. Y. Xu, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. C. Chou, and M. Z. Hasan, Observation of quantumtunneling modulated spin texture in ultrathin topological insulator Bi2Se3 films, Nat. Commun. 05, 3786 (2014), arXiv: 1404.2830v1
CrossRef ADS Google scholar
[92]
Y. Fuseya, M. Ogata, and H. Fukuyama, Interband contributions from the magnetic field on Hall effects for Dirac electrons in bismuth, Phys. Rev. Lett.102(6), 066601 (2009)
CrossRef ADS Google scholar
[93]
P. Hosur, S. A. Parameswaran, and A. Vishwanath, Charge transport in Weyl semimetals, Phys. Rev. Lett.108(4), 046602 (2012)
CrossRef ADS Google scholar
[94]
T. Kariyado and M. Ogata, Three-dimensional Dirac electrons at the Fermi energy in cubic inverse perovskites: Ca3PbO and its family, J. Phys. Soc. Jpn.80(8), 083704 (2011)
CrossRef ADS Google scholar
[95]
T. Kariyado and M. Ogata, Low-energy effective hamiltonian and the surface states of Ca3PbO, J. Phys. Soc. Jpn.81(6), 064701 (2012)
CrossRef ADS Google scholar
[96]
P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL (Europhysics Letters)97(6), 67004 (2012)
CrossRef ADS Google scholar
[97]
B. Rosenstein and M. Lewkowicz, Dynamics of electric transport in interacting Weyl semimetals, Phys. Rev. B88(4), 045108 (2013)
CrossRef ADS Google scholar
[98]
M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Noncentrosymmetric superconductor with a bulk threedimensional Dirac cone gapped by strong spin–orbit coupling, Phys. Rev. B89(2), 020505 (2014) (R)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(431 KB)

Accesses

Citations

Detail

Sections
Recommended

/