Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect

Shuai Liu, Guo-Yong Zhang, Zhiwei He, Meng Zhan

PDF(760 KB)
PDF(760 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 100503. DOI: 10.1007/s11467-015-0462-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect

Author information +
History +

Abstract

The parameter diversity effect in coupled nonidentical elements has attracted persistent interest in nonlinear dynamics. Of fundamental importance is the so-called optimal configuration problem for how the spatial position of elements with different parameters precisely determines the dynamics of the whole system. In this work, we study the optimal configuration problem for the vibration spectra in the classical mass–spring model with a ring configuration, paying particular attention to how the configuration of different masses affects the second smallest vibration frequency (ω2) and the largest one (ωN). For the extreme values of ω2 and ωN, namely, (ω2)min, (ω2)max, (ωN)min, and (ωN)max, we find some explicit organization rules for the optimal configurations and some approximation rules when the explicit organization rules are not available. The different distributions of ω2 and ωNare compared. These findings are interesting and valuable for uncovering the underlying mechanism of the parameter diversity effect in more general cases.

Graphical abstract

Keywords

synchronization / vibration frequencies / normal modes / complex systems

Cite this article

Download citation ▾
Shuai Liu, Guo-Yong Zhang, Zhiwei He, Meng Zhan. Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect. Front. Phys., 2015, 10(3): 100503 https://doi.org/10.1007/s11467-015-0462-4

References

[1]
Y. Bar-Yam, Dynamics of Complex Systems, Westview Press, 1997
[2]
M. E. J. Newman, Networks: An Introduction, Oxford University Press, 2009
[3]
I. Rigoutsos and G. Stephanopoulos, Systems Biology (Volume II): Networks, Models, and Applications, Oxford University Press, USA, 2006
[4]
I. N. Serdyuk, Methods in Molecular Biophysics: Structure, Dynamics, Function, Cambridge University Press, 2007
CrossRef ADS Google scholar
[5]
T. P. Trappenberg, Fundamentals of Computational Neuroscience, Oxford University Press, 2010
[6]
S. Boccaletti, The Synchronized Dynamics of Complex Systems, Elsevier Science, 2008
CrossRef ADS Google scholar
[7]
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep.424(4-5), 175 (2006)
CrossRef ADS Google scholar
[8]
R. Albert and A. L. Barabàsi, Statistical mechanics of complex networks, Rev. Mod. Phys.74(1), 47 (2002)
CrossRef ADS Google scholar
[9]
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep.469(3), 93 (2008)
CrossRef ADS Google scholar
[10]
S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys.80(4), 1275 (2008)
CrossRef ADS Google scholar
[11]
S. Liu, Z. W. He, and M. Zhan, Firing rates of coupled noisy excitable elements, Front. Phys.9(1), 120 (2014)
CrossRef ADS Google scholar
[12]
P. Ke and Z. Zheng, Dynamics of rotator chain with dissipative boundary, Front. Phys.9(4), 511 (2014)
CrossRef ADS Google scholar
[13]
X. Y. Wu and Z. G. Zheng, Hierarchical cluster-tendency analysis of the group structure in the foreign exchange market, Front. Phys.8(4), 451 (2013)
CrossRef ADS Google scholar
[14]
Z. Q. Yuan and Z. G. Zheng, Propagation dynamics on the Fermi-Pasta-Ulam lattices, Front. Phys.8(3), 349 (2013)
CrossRef ADS Google scholar
[15]
L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett.80(10), 2109 (1998)
CrossRef ADS Google scholar
[16]
J. Yang, G. Hu, and J. Xiao, Chaos synchronization in coupled chaotic oscillators with multiple positive Lyapunov exponents, Phys. Rev. Lett.80(3), 496 (1998)
CrossRef ADS Google scholar
[17]
G. Wei, M. Zhan, and C. H. Lai, Tailoring wavelets for chaos control, Phys. Rev. Lett.89(28), 284103 (2002)
CrossRef ADS Google scholar
[18]
M. Zhan, G. Hu, and J. Yang, Synchronization of chaos in coupled systems, Phys. Rev. E62(2), 2963 (2000)
CrossRef ADS Google scholar
[19]
A. E. Motter, C. Zhou, and J. Kurths, Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev E71(1), 016116 (2005)
CrossRef ADS Google scholar
[20]
C. Zhou, A. E. Motter, and J. Kurths, Universality in the synchronization of weighted random networks, Phys. Rev. Lett.96(3), 034101 (2006)
CrossRef ADS Google scholar
[21]
M. Chavez, D. U. Hwang, A. Amann, H. Hentschel, and S. Boccaletti, Synchronization is enhanced in weighted complex networks, Phys. Rev. Lett.94(21), 218701 (2005)
CrossRef ADS Google scholar
[22]
X. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E75(5), 056205 (2007)
CrossRef ADS Google scholar
[23]
S. Liu and M. Zhan, Clustering versus non-clustering phase synchronizations, Chaos: An Interdisciplinary J. Nonlinear Sci.24, 013104 (2014)
[24]
K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Observation of antiphase states in a multimode laser, Phys. Rev. Lett.65(14), 1749 (1990)
CrossRef ADS Google scholar
[25]
M. Zhan, G. Hu, Y. Zhang, and D. He, Generalized splay state in coupled chaotic oscillators induced by weak mutual resonant interactions, Phys. Rev. Lett.86(8), 1510 (2001)
CrossRef ADS Google scholar
[26]
W. Zou and M. Zhan, Splay states in a ring of coupled oscillators: From local to global coupling, SIAM J. Appl. Dyn. Syst.8(3), 1324 (2009)
CrossRef ADS Google scholar
[27]
D. Aronson, G. Ermentrout, and N. Kopell, Amplitude response of coupled oscillators, Physica D41(3), 403 (1990)
CrossRef ADS Google scholar
[28]
W. Zou and M. Zhan, Partial time-delay coupling enlarges death island of coupled oscillators, Phys. Rev. E80(6), 065204 (2009)
CrossRef ADS Google scholar
[29]
W. Zou, X. Zheng, and M. Zhan, Insensitive dependence of delay-induced oscillation death on complex networks, Chaos: An Interdisciplinary J. Nonlinear Sci.21, 023130 (2011)
[30]
P. Bak, How Nature Works: The Science of Self-Organized Criticality, Vol. 212, New York: Copernicus, 1996
CrossRef ADS Google scholar
[31]
W. Ren, R. W. Beard, and E. M. Atkins, A survey of consensus problems in multi-agent coordination, American Control Conference, 2005, Proceedings of the 2005 (IEEE), 1859-1864 (2005)
[32]
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett.86(14), 3200 (2001)
CrossRef ADS Google scholar
[33]
G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B61(4), 485 (2008)
CrossRef ADS Google scholar
[34]
A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nat. Phys.9(3), 191 (2013)
CrossRef ADS Google scholar
[35]
P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber, How dead ends undermine power grid stability, Nat. Commun.5, 3969 (2014)
CrossRef ADS Google scholar
[36]
Y. Braiman, J. F. Lindner, and W. L. Ditto, Taming spatiotemporal chaos with disorder, Nature378(6556), 465 (1995)
CrossRef ADS Google scholar
[37]
S. de Monte, F. d’Ovidio, and E. Mosekilde, Coherent regimes of globally coupled dynamical systems, Phys. Rev. Lett.90(5), 054102 (2003)
CrossRef ADS Google scholar
[38]
S. F. Brandt, B. K. Dellen, and R. Wessel, Synchronization from disordered driving forces in arrays of coupled oscillators, Phys. Rev. Lett.96(3), 034104 (2006)
CrossRef ADS Google scholar
[39]
C. Zhou, J. Kurths, and B. Hu, Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise, Phys. Rev. Lett.87(9), 098101 (2001)
CrossRef ADS Google scholar
[40]
C. J. Tessone, C. R. Mirasso, R. Toral, and J. D. Gunton, Diversity-induced resonance, Phys. Rev. Lett.97(19), 194101 (2006)
CrossRef ADS Google scholar
[41]
R. Toral, C. J. Tessone, and J. V. Lopes, Collective effects induced by diversity in extended systems, Eur. Phys. J. Spec. Top.143(1), 59 (2007)
CrossRef ADS Google scholar
[42]
C. J. Tessone and R. Toral, Diversity-induced resonance in a model for opinion formation, Eur. Phys. J. B71(4), 549 (2009)
CrossRef ADS Google scholar
[43]
A. Szolnoki, M. Perc, and G. Szabó, Diversity of reproduction rate supports cooperation in the prisoner’s dilemma game on complex networks, Eur. Phys. J. B61(4), 505 (2008)
CrossRef ADS Google scholar
[44]
M. Brede, Synchrony-optimized networks of non-identical Kuramoto oscillators, Phys. Lett. A372(15), 2618 (2008)
CrossRef ADS Google scholar
[45]
S. Acharyya and R. E. Amritkar, Synchronization of coupled nonidentical dynamical systems, EPL99(4), 40005 (2012)
CrossRef ADS Google scholar
[46]
T. Pereira, D. Eroglu, G. B. Bagci, U. Tirnakli, and H. J. Jensen, Connectivity-driven coherence in complex networks, Phys. Rev. Lett.110(23), 234103 (2013)
CrossRef ADS Google scholar
[47]
Y. Wu, J. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett.97(4), 40005 (2012)
CrossRef ADS Google scholar
[48]
X. Huang, M. Zhan, F. Li, and Z. Zheng, Single-clustering synchronization in a ring of Kuramoto oscillators, J. Phys. A47(12), 125101 (2014)
CrossRef ADS Google scholar
[49]
Y. Wu, W. Liu, J. Xiao, W. Zou, and J. Kurths, Effects of spatial frequency distributions on amplitude death in an array of coupled Landau–Stuart oscillators, Phys. Rev. E85(5), 056211 (2012)
CrossRef ADS Google scholar
[50]
H. Ma, W. Liu, Y. Wu, M. Zhan, and J. Xiao, Ragged oscillation death in coupled nonidentical oscillators, Commun. Nonlinear Sci. Numer. Simul.19(8), 2874 (2014)
CrossRef ADS Google scholar
[51]
M. Zhan, S. Liu, and Z. He, Matching rules for collective behaviors on complex networks: Optimal configurations for vibration frequencies of networked harmonic oscillators, PloS ONE8(12), e82161 (2013)
CrossRef ADS Google scholar
[52]
H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd Ed., New York: Addison-Wesley, 2002
[53]
D. Morin, Introduction to Classical Mechanics: With Problems and Solutions, Cambridge University Press, 2008
CrossRef ADS Google scholar
[54]
Q. Cui and I. Bahar, Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, CRC Press, 2010
[55]
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia: Saunders College, 1976
[56]
B. J. Kim, H. Hong, and M. Choi, Netons: Vibrations of complex networks, J. Phys. Math. Gen.36(23), 6329 (2003)
CrossRef ADS Google scholar
[57]
E. Estrada, Universality in protein residue networks, Biophys. J.98(5), 890 (2010)
CrossRef ADS Google scholar
[58]
E. Estrada, N. Hatano, and M. Benzi, The physics of communicability in complex networks, Phys. Rep.514(3), 89 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(760 KB)

Accesses

Citations

Detail

Sections
Recommended

/