Quantum computation in triangular decoherence-free subdynamic space

Qiao Bi

Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 100304

PDF (195KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 100304 DOI: 10.1007/s11467-015-0461-5
RESEARCH ARTICLE

Quantum computation in triangular decoherence-free subdynamic space

Author information +
History +
PDF (195KB)

Abstract

A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspaces are projected states ruled by a subdynamic kinetic equation. These projected states can be used to perform general, large-scale decoherence-free quantum computing.

Keywords

quantum information / subdynamics / decoherence-free

Cite this article

Download citation ▾
Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space. Front. Phys., 2015, 10(2): 100304 DOI:10.1007/s11467-015-0461-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and H. D. Zeh, Decoherence and The Appearance of A Classical World in Quantum Theory, Heidelberg: Springer-Verlag, 1996

[2]

P. Zanardi and M. Rasetti, Error avoiding quantum codes, Mod. Phys. Lett. B11(25), 1085 (1997)

[3]

P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett.79(17), 3306 (1997)

[4]

P. Zanardi, Virtual quantum subsystems, Phys. Rev. Lett87(7), 077901 (2001)

[5]

A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello, Stabilization of quantum computations by symmetrization, SIAM J. Comput.26(5), 1541 (1997)

[6]

L. M. Duan and G. C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Phys. Rev. Lett.79(10), 1953 (1997)

[7]

D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence Free Subspaces for Quantum Computation, Phys. Rev. Lett.81(12), 2594 (1998)

[8]

A. Shabani and D. A. Lidar, Maps for general open quantum systems and a theory of linear quantum error correction, Phys. Rev. A80(1), 012309 (2009)

[9]

O. Oreshkov, T. A. Brun, D. A. Lidar, and H. Q. C. Fault-Tolerant, Fault-Tolerant Holonomic Quantum Computation, Phys. Rev. Lett.102(7), 070502 (2009)

[10]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computer, Nature464, 45 (2010)

[11]

P. Huang, X. Kong, N. Zhao, F. Shi, P. Wang, X. Rong, R. B. Liu, and J. Du, Observation of an anomalous decoherence effect in a quantum bath at room temperature, Nat. Commun.2, 570 (2011)

[12]

S. D. Filippo, Quantum computation using decoherence-free states of the physical operator algebra, Phys. Rev. A62(5), 052307 (2000)

[13]

C. Schön and A. Beige, Analysis of a two-atom double-slit experiment based on environment-induced measurements, Phys. Rev. A64(2), 023806 (2001)

[14]

L. Viola, Quantum control via encoded dynamical decoupling, Phys. Rev. A66(1), 012307 (2002)

[15]

S. Gheorghiu-Svirschevski, From Davydov solitons to decoherence-free subspaces: Self-consistent propagation of coherent-product states, Phys. Rev. E64(5), 051907 (2001)

[16]

Q. Bi, H. E. Ruda, and M. S. Zhan, Two-qubit quantum computing in a projected subspace, Phys. Rev. A65(4), 042325 (2002)

[17]

M. S. Tame, M. Paternostro, and M. S. Kim, One-way quantum computing in a decoherence-free subspace, New J. Phys.9(6), 201 (2007)

[18]

C. Bény, A. Kempf, and D. W. Kribs, Generalization of quantum error correction via the heisenberg picture, Phys. Rev. Lett.98(10), 100502 (2007)

[19]

D. A. Lidar and K. B. Whaley, in: Irreversible Quantum Dynamics, edited by F. Benatti and R. Floreanini, Leture Notes in Physics 622, 83, Berlin: Springer, 2003

[20]

H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A84, 012305 (2001)

[21]

L. Viola, S. Lloyd, and E. Knill, Universal control of decoupled quantum systems, Phys. Rev. Lett.83(23), 4888 (1999)

[22]

M. S. Byrd and D. A. Lidar, Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing, Phys. Rev. Lett.89(4), 047901 (2002)

[23]

K. Khodjasteh and D. A. Lidar, Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy [Phys. Rev. A 68, 022322 (2003)], Phys. Rev. A72(2), 029905 (2005)

[24]

A. Sinatra, J. C. Dornstetter, and Y. Castin, Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys.7, 86 (2012)

[25]

H. Wei, Z. J. Deng, W. L. Yang, and F. Zhou, Cavity quantum networks for quantum information processing in decoherence-free subspace, Front. Phys. China4(1), 21 (2009)

[26]

N. Boulant, M. A. Pravia, E. M. Fortunato, T. F. Havel, and D. G. Cory, Experimental con-catenation of quantum error correction with decoupling, Quantum Inf. Proc.1, 135 (2002)

[27]

J. Jing and L. A. Wu, Control of decoherence with no control, Scientific Reports3, 2746 (2013)

[28]

F. Dolde, V. Bergholm, , High-fidelity spin entanglement using optimal control, Nat. Commun.3, 4371 (2014)

[29]

N. Y. Yao, C. R. Laumann, A. V. Gorshkov, H. Weimer, L. Jiang, J. I. Cirac, P. Zoller, and M. D. Lukin, Topologically protected quantum state transfer in a chiral spin liquid, Nat. Commun.4, 1585 (2013)

[30]

I. Antoniou and S. Tasaki, Generalized spectral decompositions of mixing dynamical systems, Int. J. Quantum Chem.46(3), 425 (1993)

[31]

T. Petrosky and I. Prigogine, Alternative formulation of classical and quantum dynamics for non-integrable systems, Physica A175(1), 146 (1991)

[32]

Qiao Bi, Subdynamics Theory and Application in Complex Dynamical System, Wuhan: Wuhan University of Technology Press, 1998 (in Chinese)

[33]

A. Bohm, H. D. Doebner, and P. Kielanowski, Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces, Heidelberg: Springer-Verlag, 1998

[34]

A. Bohm and M. Gadella, Dirac Kets, Gamow Vector and Gel’fand Triplets, Heidelberg: Springer-Verlag, 1989

[35]

Q. Bi and H. E. Ruda, Quantum computing using entanglement states in a photonic band gap, J. Appl. Phys.86(9), 5237 (1999)

[36]

R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, New York: John Wiley & Sons, 1975.

[37]

Q. Bi, Some charicteristics and applications for quantum information, Journal of Modern Physics03(09), 1070 (2012)

[38]

B. E. Kane, A silicon-based nuclear spin quantum computer, Nature393(6681), 133 (1998)

[39]

R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowduhory, T. Mor, and D. DiVincenzo, Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures, Phys. Rev. A62(1), 012306 (2000)

[40]

D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A57(1), 120 (1998)

[41]

W. A. Coish and D. Loss, Quantum computing with spins in solids, arXiv: cond-mat/0606550 (2006)

[42]

D. Kribs, R. La.amme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett.94(18), 180501 (2005)

[43]

D. W. Kribs, R. La.amme, D. Poulin, and M. Lesosky, Operator quantum error correction, Quantum Inf. Compu.6, 382 (2006)

[44]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A54(5), 3824 (1996)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (195KB)

1024

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/