Dynamically assisted pair production for scalar QED by two fields

Zi-Liang Li , Ding Lu , Bai-Song Xie

Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 101201

PDF (244KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 101201 DOI: 10.1007/s11467-014-0455-8
RESEARCH ARTICLE

Dynamically assisted pair production for scalar QED by two fields

Author information +
History +
PDF (244KB)

Abstract

By solving the quantum Vlasov equation, the dynamically assisted pair production for scalar quantum electrodynamics (QED) is investigated. It is verified that this mechanism still holds true for boson pair production. Two combinations of two electric fields having different time scales under various time delays are considered; it is found that the oscillations of the momentum spectrum and the number density of created bosons decrease with increasing time delay, and the latter has a maximum value when the time delay equals zero. Furthermore, the differences in vacuum pair production between bosons and fermions are also studied, and they are helpful for distinguishing the created bosons from fermions.

Graphical abstract

Keywords

quantum Vlasov equation / dynamically assisted pair production / scalar QED

Cite this article

Download citation ▾
Zi-Liang Li, Ding Lu, Bai-Song Xie. Dynamically assisted pair production for scalar QED by two fields. Front. Phys., 2015, 10(2): 101201 DOI:10.1007/s11467-014-0455-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Sauter, Über das Verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs, Z. Phys.69(11−12), 742 (1931)

[2]

W. Heisenberg and H. Euler, Folgerungen aus der Diracschen theorie des positrons, Z. Phys.98(11−12), 714 (1936)

[3]

J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82(5), 664 (1951)

[4]

A. I. Nikishov, Barrier scattering in field theory removal of Klein paradox, Nucl. Phys. B21(2), 346 (1970)

[5]

V. S. Popov, Sov. Phys. JETP35, 659 (1972)

[6]

L. V. Keldysh, Sov. Phys. JETP20, 1018 (1965)

[7]

D. L. Burke, R. Field, G. Horton-Smith, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, A. Weidemann, C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Koffas, T. Kotseroglou, A. Melissinos, D. Meyerhofer, D. Reis, and W. Ragg, Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett.79(9), 1626 (1997)

[8]

R. Schützhold, H. Gies, and G. Dunne, Dynamically assisted Schwinger mechanism, Phys. Rev. Lett.101(13), 130404 (2008)

[9]

G. V. Dunne, New strong-field QED effects at extreme light infrastructure, Eur. Phys. J. D55(2), 327 (2009)

[10]

D. B. Blaschke, A. V. Prozorkevich, G. Röpke, C. D. Roberts, S. M. Schmidt, D. S. Shkirmanov, and S. A. Smolyansky, Dynamical Schwinger effect and high-intensity lasers: Realising nonperturbative QED, Eur. Phys. J. D55(2), 341 (2009)

[11]

A. Di Piazza, E. Lotstedt, A. I. Milstein, and C. H. Keitel, Barrier control in tunneling e+-e photoproduction, Phys. Rev. Lett.103(17), 170403 (2009)

[12]

G. V. Dunne, H. Gies, and R. Schützhold, Catalysis of Schwinger vacuum pair production, Phys. Rev. D80(11), 111301 (2009)

[13]

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, Multiple colliding electromagnetic pulses: A way to lower the threshold of e+e pair production from vacuum, Phys. Rev. Lett.104(22), 220404 (2010)

[14]

C. K. Dumlu and G. V. Dunne, Stokes phenomenon and Schwinger vacuum pair production in time-dependent laser pulses, Phys. Rev. Lett.104(25), 250402 (2010)

[15]

C. K. Dumlu and G. V. Dunne, Interference effects in Schwinger vacuum pair production for time-dependent laser pulses, Phys. Rev. D83(6), 065028 (2011)

[16]

M. Orthaber, F. Hebenstreit, and R. Alkofer, Momentum spectra for dynamically assisted Schwinger pair production, Phys. Lett. B698(1), 80 (2011)

[17]

E. Akkermans and G. V. Dunne, Ramsey fringes and timedomain multiple-slit interference from vacuum, Phys. Rev. Lett.108(3), 030401 (2012)

[18]

C. Fey and R. Schützhold, Momentum dependence in the dynamically assisted Sauter–Schwinger effect, Phys. Rev. D85(2), 025004 (2012)

[19]

Z. L. Li, D. Lu, and B. S. Xie, Multiple-slit interference effect in the time domain for boson pair production, Phys. Rev. D89(6), 067701 (2014)

[20]

Y. Kluger, E. Mottola, and J. M. Eisenberg, Quantum Vlasov equation and its Markov limit, Phys. Rev. D58(12), 125015 (1998)

[21]

S. Schmidt, D. Blaschke, G. Röpke, S. A. Smolyansky, A. V. Prozorkevich, and V. D. Toneev, A quantum kinetic equation for particle production in the Schwinger mechanism, Int. J. Mod. Phys. E07(06), 709 (1998)

[22]

R. Alkofer, M. B. Hecht, C. D. Roberts, S. M. Schmidt, and D. V. Vinnik, Pair creation and an X-ray free electron laser, Phys. Rev. Lett.87(19), 193902 (2001)

[23]

C. D. Roberts, S. M. Schmidt, and D. V. Vinnik, Quantum effects with an X-ray free-electron laser, Phys. Rev. Lett.89(15), 153901 (2002)

[24]

D. B. Blaschke, A. V. Prozorkevich, C. D. Roberts, S. M. Schmidt, and S. A. Smolyansky, Pair production and optical lasers, Phys. Rev. Lett.96(14), 140402 (2006)

[25]

A. Nuriman, B. S. Xie, Z. L. Li, and D. Sayipjamal, Enhanced electron–positron pair creation by dynamically assisted combinational fields, Phys. Lett. B717(4−5), 465 (2012)

[26]

N. Abdukerim, Z. L. Li, and B. S. Xie, Effects of laser pulse shape and carrier envelope phase on pair production, Phys. Lett. B726(4−5), 820 (2013)

[27]

Z. L. Li, D. Lu, B. S. Xie, L. B. Fu, J. Liu, and B. F. Shen, Enhanced pair production in strong fields by multiple-slit interference effect with dynamically assisted Schwinger mechanism, Phys. Rev. D89(9), 093011 (2014)

[28]

O. Oluk, B. S. Xie, M. A. Bake, and S. Dulat, Electronpositron pair production in a strong asymmetric laser electric field. Phys.9(2), 157 (2014)

[29]

J. Boyer, F. Butler, G. Gidal, G. Abrams, D. Amidei, , Two-photon production of pion pairs, Phys. Rev. D42(5), 1350 (1990)

[30]

J. Dominick, M. Lambrecht, S. Sanghera, V. Shelkov, T. Skwarnicki, ., Two-photon production of charged pion and kaon pairs, Phys. Rev. D50(5), 3027 (1994)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (244KB)

1195

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/