Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects

Jin-Hong Huang, Hong-Ji Li, Xiang-Yu Zhang, Yong-Yao Li

PDF(498 KB)
PDF(498 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 104201. DOI: 10.1007/s11467-014-0452-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects

Author information +
History +

Abstract

We study the interactions of moving discrete solitons in waveguide arrays with two types of point defects that are constructed by varying either the local linear coupling or local waveguide propagation constant at the center of the waveguide array. A broad discrete soliton is kicked toward the defect and interacts with it. Transmission, reflection, scattering, and trapping during the interaction between the soliton and the defect occur depending on the parameters. The detailed behavior of the soliton dynamics is analyzed numerically. A transmission window in the parameter domain is found and the behavior of this window for different parameters is studied. The dynamics of the soliton in the transmission window is found to have chaotic features under certain circumstances and the causes of these phenomena are identified and discussed.

Graphical abstract

Keywords

traveling discrete soliton / waveguide arrays / -defect and -defect

Cite this article

Download citation ▾
Jin-Hong Huang, Hong-Ji Li, Xiang-Yu Zhang, Yong-Yao Li. Transmission, reflection, scattering, and trapping of traveling discrete solitons by and point defects. Front. Phys., 2015, 10(2): 104201 https://doi.org/10.1007/s11467-014-0452-y

References

[1]
F. Lederer, G. I. Stegemanb, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep.463(1-3), 1 (2008)
CrossRef ADS Google scholar
[2]
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature424(6950), 817 (2003)
CrossRef ADS Google scholar
[3]
I. L. Garanovich, S. Longhi, A. A. Sukhorukova, and Y. S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep.518(1-2), 1 (2012)
CrossRef ADS Google scholar
[4]
Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial solitons: Historical overview and recent advances, Rep. Prog. Phys.75(8), 086401 (2012)
CrossRef ADS Google scholar
[5]
C. Lou, L. Tang, D. Song, X. Wang, J. Xu, and Z. Chen, Novel spatial solitons in light-induced photonic bandgap structures, Front. Phys.3(1), 1 (2008)
CrossRef ADS Google scholar
[6]
D. N. Christodoulides and E. D. Eugenieva, Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays., Phys. Rev. Lett.87(23), 233901 (2001)
CrossRef ADS Google scholar
[7]
V. Ahufinger, A. Sanpera, P. Pedri, L. Santos, and M. Lewenstein, Creation and mobility of discrete solitons in Bose-Einstein condensates, Phys. Rev. A69(5), 053604 (2004)
CrossRef ADS Google scholar
[8]
R. A. Vicencio and M. Johansson, Discrete soliton mobility in two-dimensional waveguide arrays with saturable nonlinearity, Phys. Rev. E73(4), 046602 (2006)
CrossRef ADS Google scholar
[9]
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape and mobility control in optical lattices, Progress in Optics52, 63 (2009)
CrossRef ADS Google scholar
[10]
Y. S. Kivshar and B. A. Malomed, Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys.61(4), 763 (1989)
CrossRef ADS Google scholar
[11]
V. V. Konotop, O. A. Chubykalo, and L. Vázquez, Dynamics and interaction of solitons on an integrable inhomogeneous lattice, Phys. Rev. E48(1), 563 (1993)
CrossRef ADS Google scholar
[12]
D. Cai, A. R. Bishop, N. Grøbech-Jensen, and B. A. Malomed, Moving solitons in the damped Ablowitz-Ladik model driven by a standing wave, Phys. Rev. E50(2), R694 (1994)
CrossRef ADS Google scholar
[13]
U. Peschel, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Nonlinearly induced escape from a defect state in waveguide arrays, Appl. Phys. Lett.75(10), 1348 (1999)
CrossRef ADS Google scholar
[14]
R. Morandotti, H. S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto, M. Sorel, C. R. Stanley, and J. S. Aitchison, Interactions of discrete solitons with structural defects, Opt. Lett.28(10), 834 (2003)
CrossRef ADS Google scholar
[15]
L. Morales-Molina and R. A. Vicencio, Trapping of discrete solitons by defects in nonlinear waveguide arrays, Opt. Lett.31(7), 966 (2006)
CrossRef ADS Google scholar
[16]
M. I. Molina, I. L. Garanovich, A. A. Sukhorukov, and Y. S. Kivshar, Discrete surface solitons in semiinfinite binary waveguide arrays, Opt. Lett.33(15), 2332 (2006)
CrossRef ADS Google scholar
[17]
M. I. Molina and Y. S. Kivshar, Nonlinear localized modes at phase-slip defects in waveguide arrays, Opt. Lett.33(9), 917 (2008)
CrossRef ADS Google scholar
[18]
Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, Defect-mediated discrete solitons in optically induced photorefractive lattices, Phys. Rev. A80(4), 043824 (2009)
CrossRef ADS Google scholar
[19]
X. Zhang, J. Chai, J. Huang, Z. Chen, Y. Li, and B. A. Malomed, Discrete solitons and scatttering of lattice waves in guiding arrays with a nonlinear PT-symmetricdefect, Opt. Exp.22(11), 13927 (2014)
CrossRef ADS Google scholar
[20]
X. Zhang, J. Chai, D. Ou, and Y. Li, Antisymmetry breaking of discrete dipole gap solitons induced by a phase-slip defect, Mod. Phys. Lett. B28(12), 1450097 (2014)
CrossRef ADS Google scholar
[21]
S. V. Dmitriev, S. V. Suchkov, A. A. Sukhorukov, and Y. S. Kivshar, Scattering of linear and nonlinear waves in a waveguide array with a PT-symmetric defect, Phys. Rev. A84(1), 013833 (2011)
CrossRef ADS Google scholar
[22]
S. V. Suchkov, A. A. Sukhorukov, S. V. Dmitriev, and Y. S. Kivshar, Scattering of the discrete solitons on the Ptsymmetric defects, Eur. Phys. Lett.100(5), 54003 (2012)
CrossRef ADS Google scholar
[23]
A. Regensburger, M. A. Miri, C. Bersch, J. Nager, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Observation of defect states in PT-symmetric optical lattices, Phys. Rev. Lett.110(22), 223902 (2013)
CrossRef ADS Google scholar
[24]
M. L. Chiofalo, S. Succi, and M. P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E62(5), 7438 (2000)
CrossRef ADS Google scholar
[25]
J. Yang, Newton-conjugate gradient methods for solitary wave computations, J. Comput. Phys.228(18), 7007 (2009)
CrossRef ADS Google scholar
[26]
O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys.78(1), 179 (2006)
CrossRef ADS Google scholar
[27]
Y. Li, J. Liu, W. Pang, and B. A. Malomed, Lattice solitons with quadrupolar intersite interactions, Phys. Rev. A88(6), 063635 (2013)
CrossRef ADS Google scholar
[28]
S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose- Einstein condensates, Front. Phys.8(3), 302 (2013)
CrossRef ADS Google scholar
[29]
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys.7(1), 109 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(498 KB)

Accesses

Citations

Detail

Sections
Recommended

/