Correlated effects of noise on symmetry of an asymmetric bistable system
Chun Li, Fei Long, Dong-Cheng Mei
Correlated effects of noise on symmetry of an asymmetric bistable system
The effects of correlation between additive and multiplicative noises on the symmetry of an asymmetric bistable system are investigated. The steady-state probability distribution function of the system was calculated by using analytical and numerical methods. Results indicate that i) for the case of positive correlation between noises, as the correlation strength between additive and multiplicative noises, λ, increases, the symmetry of the system is restored; ii) for the case of negative correlation between noises, as the absolute value of λ increases, the symmetry of the system is destroyed; and iii) the analytic prediction agrees well with the stochastic simulation result.
asymmetry bistable system / correlated noises / symmetrical characteristic
[1] |
B. McNamara, K. Wiesenfeld, and R. Roy, Observation of stochastic resonance in a ring laser, Phys. Rev. Lett.60(25), 2626 (1988)
CrossRef
ADS
Google scholar
|
[2] |
L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys.70(1), 223 (1998)
CrossRef
ADS
Google scholar
|
[3] |
R. N. Mantegna and B. Spagnolo, Noise enhanced stability in an unstable system, Phys. Rev. Lett.76(4), 563 (1996)
CrossRef
ADS
Google scholar
|
[4] |
A. A. Dubkov, N. V. Agudov, and B. Spagnolo, Noiseenhanced stability in fluctuating metastable states, Phys. Rev. E69(6), 061103 (2004)
CrossRef
ADS
Google scholar
|
[5] |
A. Fiasconaro, J. J. Mazo, and B. Spagnolo, Noise-induced enhancement of stability in a metastable system with damping, Phys. Rev. E82(4), 041120 (2010)
CrossRef
ADS
Google scholar
|
[6] |
R. Doering and C. Gadoua, Resonant activation over a fluctuating barrier, Phys. Rev. Lett.69(16), 2318 (1992)
CrossRef
ADS
Google scholar
|
[7] |
P. Hänggi, Escape over fluctuating barriers driven by colored noise, Chem. Phys.180(2-3), 157 (1994)
CrossRef
ADS
Google scholar
|
[8] |
P. Pechukas and P. Hänggi, Rates of activated processes with fluctuating barriers, Phys. Rev. Lett.73(20), 2772 (1994)
CrossRef
ADS
Google scholar
|
[9] |
R. N. Mantegna and B. Spagnolo, Experimental investigation of resonant activation, Phys. Rev. Lett.84(14), 3025 (2000)
CrossRef
ADS
Google scholar
|
[10] |
C. E. Budde and M. O. Cáceres, Diffusion in presence of external anomalous noise, Phys. Rev. Lett.60(26), 2712 (1988)
CrossRef
ADS
Google scholar
|
[11] |
J. M. Sancho, A. M. Lacasta, K. Lindenberg, I. M. Sokolov, and A. H. Romero, Diffusion on a solid surface: Anomalous is normal, Phys. Rev. Lett.92(25), 250601 (2004)
CrossRef
ADS
Google scholar
|
[12] |
J. H. Chen, E. Hontz, J. Moix, M. Welborn, T. V. Voorhis, A. Suárez, R. Movassagh, and A. Edelman, Error analysis of free probability approximations to the density of states of disordered systems, Phys. Rev. Lett.109(3), 036403 (2012)
CrossRef
ADS
Google scholar
|
[13] |
I. I. Fedchenia, A two-dimensional Fokker–Planck equation degenerating on a straight line, J. Stat. Phys.52(3-4), 1005 (1988)
CrossRef
ADS
Google scholar
|
[14] |
A. Fulinski and T. Telejko, On the effect of interference of additive and multiplicative noises, Phys. Lett. A152(1-2), 11 (1991)
|
[15] |
A. J. R. Madureira, P. Hänggi, and H. S. Wio, Giant suppression of the activation rate in the presence of correlated white noise sources, Phys. Lett. A217(4-5), 248 (1996)
CrossRef
ADS
Google scholar
|
[16] |
D. J. Wu, L. Cao, and S. Z. Ke, Internal fluctuations, period doubling, and chemical chaos, Phys. Rev. E50(5), 2496 (1994)
CrossRef
ADS
Google scholar
|
[17] |
Y. Jia and J. R. Li, Steady-state analysis of a bistable system with additive and multiplicative noises, Phys. Rev. E53(6), 5786 (1996)
CrossRef
ADS
Google scholar
|
[18] |
J. H. Li, Z. Q. Huang, and D. Y. Xing, Nonequilibrium transitions for a stochastic globally coupled model, Phys. Rev. E58(3), 2838 (1998)
CrossRef
ADS
Google scholar
|
[19] |
Y. Jia and J. R. Li, Transient properties of a bistable kinetic model with correlations between additive and multiplicative noises: Mean first-passage time, Phys. Rev. E53(6), 5764 (1996)
CrossRef
ADS
Google scholar
|
[20] |
D. C. Mei, C. W. Xie, and L. Zhang, Effects of cross correlation on the relaxation time of a bistable system driven by cross-correlated noise, Phys. Rev. E68(5), 051102 (2003)
CrossRef
ADS
Google scholar
|
[21] |
M. E. Inchiosa, A. R. Bulsara, and L. Gammaitoni, Higherorder resonant behavior in asymmetric nonlinear stochastic systems, Phys. Rev. E55(4), 4049 (1997)
CrossRef
ADS
Google scholar
|
[22] |
S. Bouzat and H. S. Wio, Stochastic resonance in extended bistable systems: The role of potential symmetry, Phys. Rev. E59 (5), 5142 (1999)
CrossRef
ADS
Google scholar
|
[23] |
L. Gammaitoni and A. R. Balsara, Noise activated nonlinear dynamic sensors, Phys. Rev. Lett.88(23), 230601 (2002)
CrossRef
ADS
Google scholar
|
[24] |
J. H. Li, Effect of asymmetry on stochastic resonance and stochastic resonance induced by multiplicative noise and by mean-field coupling, Phys. Rev. E66(3), 031104 (2002)
CrossRef
ADS
Google scholar
|
[25] |
A. R. Bulsara, M. E. Inchiosa, and L. Gammaitoni, Noisecontrolled resonance behavior in nonlinear dynamical systems with broken symmetry, Phys. Rev. Lett.77(11), 2162 (1996)
CrossRef
ADS
Google scholar
|
[26] |
D. Wu and S. Q. Zhu, Brownian motor with time-delayed feedback, Phys. Rev. E73(5), 051107 (2006)
CrossRef
ADS
Google scholar
|
[27] |
A. A. Budini and M. O. Cáceres, Functional characterization of linear delay Langevin equations, Phys. Rev. E70(4), 046104 (2004)
CrossRef
ADS
Google scholar
|
[28] |
C. W. Gardiner, Handbook of Stochastic Methods, Springer Series in Synergetics, Vol. 13, Berlin: Springer, 1983
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |