On the cutoff law of laser induced high harmonic spectra

Dong-Sheng Guo, Chao Yu, Jingtao Zhang, Ju Gao, Zhi-Wei Sun, Zhenrong Sun

PDF(268 KB)
PDF(268 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 103201. DOI: 10.1007/s11467-014-0447-8
RESEARCH ARTICLE
RESEARCH ARTICLE

On the cutoff law of laser induced high harmonic spectra

Author information +
History +

Abstract

The currently well accepted cutoff law for laser induced high harmonic spectra predicts the cutoff energy as a linear combination of two interaction energies, the ponderomotive energy Up and the atomic biding energy Ip, with coefficients 3.17 and 1.32, respectively. Even though, this law has been there for twenty years or so, the background information for these two constants, such as how they relate to fundamental physics and mathematics constants, is still unknown. This simple fact, keeps this cutoff law remaining as an empirical one. Based on the cutoff property of Bessel functions and the Einstein photoelectric law in the multiphoton case, we show these two coefficients are algebraic constants, 9 - 42≈ 3.34 and 22- 1 ≈ 1.83, respectively. A recent spectra calculation and an experimental measurement support the new cutoff law.

Graphical abstract

Keywords

high harmonic generation / cutoff law / strong laser physics / nonperturbative quantum electrodynamics / Bessel functions / Einstein photoelectric effect

Cite this article

Download citation ▾
Dong-Sheng Guo, Chao Yu, Jingtao Zhang, Ju Gao, Zhi-Wei Sun, Zhenrong Sun. On the cutoff law of laser induced high harmonic spectra. Front. Phys., 2015, 10(2): 103201 https://doi.org/10.1007/s11467-014-0447-8

References

[1]
J. L. Krause, K. J. Schafer, and K. C. Kulander, High-order harmonic generation from atoms and ions in the high intensity regime, Phys. Rev. Lett., 1992, 68(24): 3535
CrossRef ADS Google scholar
[2]
P. B. Corkum, Plasma perspective on strong field multiphoton ionization, Phys. Rev. Lett., 1993, 71(13): 1994
CrossRef ADS Google scholar
[3]
M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L Huillier, and P. B. Corkum, Theory of high-harmonic generation by lowfrequency laser fields, Phys. Rev. A, 1994, 49(3): 2117
CrossRef ADS Google scholar
[4]
T. Popmintchev, M.-C. Chen, D. Popminchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane and H. C. Kapteyn, Bright coherent ultrahigh harmonics in the keV X-ray regime from midinfrared femtosecond lasers, Science, 2012, 336(6086): 1287
CrossRef ADS Google scholar
[5]
D.-S. Guo, T. Åberg, and B. Crasemann, Scattering theory of multiphoton ionization in strong fields, Phys. Rev. A, 1989, 40(9): 4997
CrossRef ADS Google scholar
[6]
P. Agostini, F. Fabré, G. Mainfray, G. Petite, and N. K. Rahman, Free-free transitions following six-photon ionization of xenon atoms, Phys. Rev. Lett., 1979, 42: 1127
CrossRef ADS Google scholar
[7]
X. F. Li, J. T. Zhang, Z. Z. Xu, P.M. Fu, D.-S. Guo, and R. R. Freeman, Theory of the Kapitza–Dirac diffraction effect, Phys. Rev. Lett., 2004, 92(23): 233603
CrossRef ADS Google scholar
[8]
D.-S. Guo, Theory of the Kapitza–Dirac effect in strong radiation fields, Phys. Rev. A, 1996, 53(6): 4311
CrossRef ADS Google scholar
[9]
Y. Wang, J. T. Zhang, Z. Z. Xu, Y.-S. Wu, J. Wang, and D.-S. Guo, Direct theoretical method for the determination of peak laser intensities from Freeman resonances in abovethreshold ionization, Phys. Rev. A, 2009, 80(5): 53417
CrossRef ADS Google scholar
[10]
D.-S. Guo, Y.-S. Wu, and L. V. Woerkom, Algebraic solution for a two-level atom in radiation fields and the Freeman resonances, Phys. Rev. A, 2006, 73(2): 023419
CrossRef ADS Google scholar
[11]
J. Gao, F. Shen, and J. G. Eden, Quantum electrodynamic treatment of harmonic generation in intense optical fields, Phys. Rev. Lett., 1998, 81(9): 1833
CrossRef ADS Google scholar
[12]
J. Gao, F. Shen, and J. G. Eden, Interpretation of highorder harmonic generation in terms of transitions between quantum Volkov states, Phys. Rev. A, 2000, 61(4): 043812
CrossRef ADS Google scholar
[13]
L. H. Gao, X. F. Li, P. M. Fu, R. R. Freeman, and D.-S. Guo, Nonperturbative quantum electrodynamics theory of high-order harmonic generation, Phys. Rev. A, 2000, 61(6): 063407
CrossRef ADS Google scholar
[14]
L. H. Bai, J. T. Zhang, Z. Z. Xu, and D.-S. Guo, Photoelectron angular distributions from above threshold ionization of hydrogen atoms in strong laser fields, Phys. Rev. Lett., 2006, 97(19): 193002
CrossRef ADS Google scholar
[15]
D.-S. Guo, J. T. Zhang, Z. Z. Xu, X. F. Li, P. M. Fu, and R. R. Freeman, Practical scaling law for photoelectron angular distributions, Phys. Rev. A, 2003, 68(4): 43404
CrossRef ADS Google scholar
[16]
J. T. Zhang, W. Q. Zhang, Z. Z. Xu, X. F. Li, P. M. Fu, D.-S. Guo, and R. R. Freeman, The calculation of photoelectron angular distributions with jet-like structure from scattering theory, J. Phys. B: At. Mol. Opt. Phys., 2002, 35(23): 4809
CrossRef ADS Google scholar
[17]
C. Yu, J. T. Zhang, Z.-W Sun, Z. R. Sun, and D.-S. Guo, A nonperturbativ quantum electrodynamic approach to the theory of laser induced high harmonic generation, Front. Phys., 2014,
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(268 KB)

Accesses

Citations

Detail

Sections
Recommended

/