On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations

Hong-Yi Fan, Jun-Hua Chen

PDF(174 KB)
PDF(174 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (1) : 100301. DOI: 10.1007/s11467-014-0445-x
Atomic, Molecular, and Optical Physics
Atomic, Molecular, and Optical Physics

On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations

Author information +
History +

Abstract

By a quantum mechanical analysis of the additive rule Fα[Fβ[f]] = Fα+β[f], which the fractional Fourier transformation (FrFT) Fα[f] should satisfy, we reveal that the position-momentum mutualtransformation operator is the core element for constructing the integration kernel of FrFT. Based on this observation and the two mutually conjugate entangled-state representations, we then derive a core operator for enabling a complex fractional Fourier transformation (CFrFT), which also obeys the additive rule. In a similar manner, we also reveal the fractional transformation property for a type of Fresnel operator.

Keywords

fractional Fourier transform / core operator / IWOP technique / entangled state of continuum variables / Fresnel operator

Cite this article

Download citation ▾
Hong-Yi Fan, Jun-Hua Chen. On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations. Front. Phys., 2015, 10(1): 100301 https://doi.org/10.1007/s11467-014-0445-x

References

[1]
H. Y. Fan and L. Y. Hu, Correpondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys. 7(3), 261 (2012)
CrossRef ADS Google scholar
[2]
V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Appl.25(3), 241 (1980)
CrossRef ADS Google scholar
[3]
A. C. McBride and F. H. Kerr, On Namias’s fractional Fourier transforms, IMA J. Appl. Math.39(2), 159 (1987)
CrossRef ADS Google scholar
[4]
H. M. Ozaktas and B. Barshan, Convolution, filtering, and mutiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms, J. Opt. Soc. Am. A11(2), 547 (1994)
CrossRef ADS Google scholar
[5]
A. W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. A10(10), 2181 (1993)
CrossRef ADS Google scholar
[6]
D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, Graded index fibers, Wigner distribution functions and the fractional Fourier transform, Appl. Opt.33(26) 6188 (1994)
CrossRef ADS Google scholar
[7]
L. M. Bernardo and O. D. D. Soares, Fractional Fourier transforms and optical systems, Opt. Commun. 110(5-6), 517 (1994)
CrossRef ADS Google scholar
[8]
H. M. Ozaktas and D. Mendlovic, Fourier transforms of fractional order and their optical implementation, J. Opt. Soc. Am. A10(12), 2522 (1993)
CrossRef ADS Google scholar
[9]
S. Chountasis, A. Vourdas, and C. Bendjaballah, Fractional Fourier operators and generalized Wigner functions, Phys. Rev. A 60(5), 3467 (1999)
CrossRef ADS Google scholar
[10]
D. Mendlovic and H. M. Ozaktas, Fractional Fourier transforms and their optical implementation (I), J. Opt. Soc. Am. A10(9), 1875 (1993)
CrossRef ADS Google scholar
[11]
H.-Y. Fan, L.-Y. Hu, and J.-S. Wang, Eigenfunctions of complex fractional Fourier transformation obtained in the context of Quantum optics, J. Opt. Soc. Am. A25(4), 974 (2008)
CrossRef ADS Google scholar
[12]
H. Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B5(4), R147 (2003)
CrossRef ADS Google scholar
[13]
A. Wünsche, About integration within ordered products in quantum optics, J. Opt. B2(3), R11 (2000)
[14]
H. Y. Fan, H. R. Zaidi, and J. R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D35(6), 1831 (1987)
CrossRef ADS Google scholar
[15]
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A49(2), 704 (1994)
CrossRef ADS Google scholar
[16]
H. Y. Fan and X. Ye, Common eigenstates of two particles’ center-of-mass coordinates and mass-weighted relative momentum, Phys. Rev. A51(4), 3343 (1995)
CrossRef ADS Google scholar
[17]
H. Y. Fan and Y. Fan, Representations of two-mode squeezing transformations, Phys. Rev. A54(1), 958 (1996)
CrossRef ADS Google scholar
[18]
H. Y. Fan and J. H. Chen, EPR entangled state and generalized Bargmann transformation, Phys. Lett. A303(5-6), 311 (2002)
CrossRef ADS Google scholar
[19]
A. Einstein, B. Podolsky, and N. Rosen, Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47(3), 777 (1935)
CrossRef ADS Google scholar
[20]
H. Y. Fan, S. Wang, and H. Y. Hu, Evolution of the singlemode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 74 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(174 KB)

Accesses

Citations

Detail

Sections
Recommended

/