On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations
Hong-Yi Fan, Jun-Hua Chen
On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations
By a quantum mechanical analysis of the additive rule Fα[Fβ[f]] = Fα+β[f], which the fractional Fourier transformation (FrFT) Fα[f] should satisfy, we reveal that the position-momentum mutualtransformation operator is the core element for constructing the integration kernel of FrFT. Based on this observation and the two mutually conjugate entangled-state representations, we then derive a core operator for enabling a complex fractional Fourier transformation (CFrFT), which also obeys the additive rule. In a similar manner, we also reveal the fractional transformation property for a type of Fresnel operator.
fractional Fourier transform / core operator / IWOP technique / entangled state of continuum variables / Fresnel operator
[1] |
H. Y. Fan and L. Y. Hu, Correpondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys. 7(3), 261 (2012)
CrossRef
ADS
Google scholar
|
[2] |
V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Appl.25(3), 241 (1980)
CrossRef
ADS
Google scholar
|
[3] |
A. C. McBride and F. H. Kerr, On Namias’s fractional Fourier transforms, IMA J. Appl. Math.39(2), 159 (1987)
CrossRef
ADS
Google scholar
|
[4] |
H. M. Ozaktas and B. Barshan, Convolution, filtering, and mutiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms, J. Opt. Soc. Am. A11(2), 547 (1994)
CrossRef
ADS
Google scholar
|
[5] |
A. W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. A10(10), 2181 (1993)
CrossRef
ADS
Google scholar
|
[6] |
D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, Graded index fibers, Wigner distribution functions and the fractional Fourier transform, Appl. Opt.33(26) 6188 (1994)
CrossRef
ADS
Google scholar
|
[7] |
L. M. Bernardo and O. D. D. Soares, Fractional Fourier transforms and optical systems, Opt. Commun. 110(5-6), 517 (1994)
CrossRef
ADS
Google scholar
|
[8] |
H. M. Ozaktas and D. Mendlovic, Fourier transforms of fractional order and their optical implementation, J. Opt. Soc. Am. A10(12), 2522 (1993)
CrossRef
ADS
Google scholar
|
[9] |
S. Chountasis, A. Vourdas, and C. Bendjaballah, Fractional Fourier operators and generalized Wigner functions, Phys. Rev. A 60(5), 3467 (1999)
CrossRef
ADS
Google scholar
|
[10] |
D. Mendlovic and H. M. Ozaktas, Fractional Fourier transforms and their optical implementation (I), J. Opt. Soc. Am. A10(9), 1875 (1993)
CrossRef
ADS
Google scholar
|
[11] |
H.-Y. Fan, L.-Y. Hu, and J.-S. Wang, Eigenfunctions of complex fractional Fourier transformation obtained in the context of Quantum optics, J. Opt. Soc. Am. A25(4), 974 (2008)
CrossRef
ADS
Google scholar
|
[12] |
H. Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B5(4), R147 (2003)
CrossRef
ADS
Google scholar
|
[13] |
A. Wünsche, About integration within ordered products in quantum optics, J. Opt. B2(3), R11 (2000)
|
[14] |
H. Y. Fan, H. R. Zaidi, and J. R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D35(6), 1831 (1987)
CrossRef
ADS
Google scholar
|
[15] |
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A49(2), 704 (1994)
CrossRef
ADS
Google scholar
|
[16] |
H. Y. Fan and X. Ye, Common eigenstates of two particles’ center-of-mass coordinates and mass-weighted relative momentum, Phys. Rev. A51(4), 3343 (1995)
CrossRef
ADS
Google scholar
|
[17] |
H. Y. Fan and Y. Fan, Representations of two-mode squeezing transformations, Phys. Rev. A54(1), 958 (1996)
CrossRef
ADS
Google scholar
|
[18] |
H. Y. Fan and J. H. Chen, EPR entangled state and generalized Bargmann transformation, Phys. Lett. A303(5-6), 311 (2002)
CrossRef
ADS
Google scholar
|
[19] |
A. Einstein, B. Podolsky, and N. Rosen, Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47(3), 777 (1935)
CrossRef
ADS
Google scholar
|
[20] |
H. Y. Fan, S. Wang, and H. Y. Hu, Evolution of the singlemode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 74 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |