Single molecular shuttle-junction: Shot noise and decoherence
Wenxi Lai, Chao Zhang, Zhongshui Ma
Single molecular shuttle-junction: Shot noise and decoherence
Single molecular shuttle-junction is one kind of nanoscale electromechanical tunneling system. In this junction, a molecular island oscillates depending on its charge occupation, and this charge dependent oscillation leads to modulation of electron tunneling through the molecular island. This paper reviews recent development on the study of current, shot noise and decoherence of electrons in the single molecular shuttle-junction. We will give detailed discussion on this topic using the typical system model, the theory of fully quantum master equation and the Aharonov–Bohm interferometer.
molecular shuttle-junction / master equation / shot noise / decoherence
[1] |
L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo, R. I. Shekhter , and M. Jonson, Shuttle mechanism for charge transfer in coulomb blockade nanostructures, Phys. Rev. Lett.80(20), 4526 (1998)
CrossRef
ADS
Google scholar
|
[2] |
A. Donarini, T. Novotn’y, and A. P. Jauho, Simple models suffice for the single-dot quantum shuttle, New J. Phys.7(1), 237 (2005)
CrossRef
ADS
Google scholar
|
[3] |
D. W. Utami, H. S. Goan, C. A. Holmes, and G. J. Milburn, Quantum noise in the electromechanical shuttle: Quantum master equation treatment, Phys. Rev. B74(1), 014303 (2006)
CrossRef
ADS
Google scholar
|
[4] |
D. Mozyrsky and I. Martin, Quantum classical transition induced by electrical measurement, Phys. Rev. Lett. 89(1), 018301 (2002)
CrossRef
ADS
Google scholar
|
[5] |
D. Mozyrsky, I. Martin, and M. B. Hastings, Quantumlimited sensitivity of single-electron-transistor-based displacement detectors, Phys. Rev. Lett.92(1), 018303 (2004)
CrossRef
ADS
Google scholar
|
[6] |
S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, and H. S. J. Van Der Zant, Motion detection of a micromechanical resonator embedded in a d.c. SQUID, Nat. Phys.4(10), 785 (2008)
CrossRef
ADS
Google scholar
|
[7] |
M. P. Blencowe and M. N. Wybourne, Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor,Appl. Phys. Lett.77( 23), 3845 (2000)
CrossRef
ADS
Google scholar
|
[8] |
J. Twamley, D. W. Utami, H. S. Goan, and G. Milburn, Spin-detection in a quantum electromechanical shuttle system, New J. Phys.8(5), 63 (2006)
CrossRef
ADS
Google scholar
|
[9] |
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Single spin detection by magnetic resonance force microscopy, Nature430(6997), 329 (2004)
CrossRef
ADS
Google scholar
|
[10] |
A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature392, 160 (1998)
CrossRef
ADS
Google scholar
|
[11] |
H. B. Meerwaldt, G. Labadze, B. H. Schneider, A. Taspinar, Ya. M. Blanter, H. S. J. van der Zant, and G. A. Steele, Probing the charge of a quantum dot with a nanomechanical resonator, Phys. Rev. B86(11), 115454 (2012)
CrossRef
ADS
Google scholar
|
[12] |
K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol.3(9), 533 (2008)
CrossRef
ADS
Google scholar
|
[13] |
J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Thermopower of single-molecule devices, Phys. Rev. B70(19), 195107 (2004)
CrossRef
ADS
Google scholar
|
[14] |
M. Galperin, K. Saito, A. V. Balatsky, and A. Nitzan, Cooling mechanisms in molecular conduction junctions, Phys. Rev. B80(11), 115427 (2009)
CrossRef
ADS
Google scholar
|
[15] |
G. Romano, A. Gagliardi, A. Pecchia, and A. Di Carlo, Heating and cooling mechanisms in single-molecule junctions, Phys. Rev. B81(11), 115438 (2010)
CrossRef
ADS
Google scholar
|
[16] |
G. Schulze, K. J. Franke, A. Gagliardi, G. Romano, C. S. Lin, A. L. Rosa, T. A. Niehaus, Th. Frauenheim, A. Di Carlo, A. Pecchia, and J. I. Pascual, Resonant electron heating and molecular phonon cooling in single C60 junctions, Phys. Rev. Lett.100(13), 136801 (2008)
CrossRef
ADS
Google scholar
|
[17] |
P. C. E. Stamp and C. Zhang, Theory of Bloch delocalization and quantum diffusion of heavy particles in insulators, Phys. Rev. Lett.66(14), 1902 (1991)
CrossRef
ADS
Google scholar
|
[18] |
C. Zhang and Y. Takahashi, Dynamical conductivity of a two-layered structure with electron acoustic phonon coupling, J. Phys.: Condens. Matter5(28), 5009 (1993)
CrossRef
ADS
Google scholar
|
[19] |
A. Nocera, C. A. Perroni, V. Marigliano Ramaglia, and V. Cataudella, Stochastic dynamics for a single vibrational mode in molecular junctions, Phys. Rev. B83(11), 115420 (2011)
CrossRef
ADS
Google scholar
|
[20] |
A. Metelmann and T. Brandes, Adiabaticity in semiclassical nanoelectromechanical systems, Phys. Rev. B84(15), 155455 (2011)
CrossRef
ADS
Google scholar
|
[21] |
T. Koch, J. Loos, A. Alvermann, and H. Fehske, Nonequilibrium transport through molecular junctions in the quantum regime, Phys. Rev. B84(12), 125131 (2011)
CrossRef
ADS
Google scholar
|
[22] |
R. C. Monreal, F. Flores, and A. Martin-Rodero, Nonequilibrium transport in molecular junctions with strong electron-phonon interactions, Phys. Rev. B82(23), 235412 (2010)
CrossRef
ADS
Google scholar
|
[23] |
M. Galperin, M. A. Ratner, and A. Nitzan, Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips, J. Chem. Phys.121(23), 11965 (2004)
CrossRef
ADS
Google scholar
|
[24] |
M. Galperin, M. A. Ratner, and A. Nitzan, On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett.4(9), 1605 (2004)
CrossRef
ADS
Google scholar
|
[25] |
L. Mühlbacher and E. Rabani, Real-time path integral approach to nonequilibrium many-body quantum systems, Phys. Rev. Lett.100(17), 176403 (2008)
CrossRef
ADS
Google scholar
|
[26] |
D. F. Walls and G. J. Milburn, Quantum Optics, New York: Springer-Verlag, 1994, p91
|
[27] |
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997, page 249
CrossRef
ADS
Google scholar
|
[28] |
S. A. Gurvitz and Y. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B53(23), 15932 (1996)
CrossRef
ADS
Google scholar
|
[29] |
D. Boese and H. Schoeller, Influence of nanomechanical properties on single-electron tunneling: A vibrating singleelectron transistor, Europhys. Lett.54(5), 668 (2001)
CrossRef
ADS
Google scholar
|
[30] |
K. D. McCarthy, N. Prokofev, and M. T. Tuominen, Incoherent dynamics of vibrating single-molecule transistors, Phys. Rev. B67(24), 245415 (2003)
CrossRef
ADS
Google scholar
|
[31] |
S. Braig and K. Flensberg, Vibrational sidebands and dissipative tunneling in molecular transistors, Phys. Rev. B68(20), 205324 (2003)
CrossRef
ADS
Google scholar
|
[32] |
J. Koch and F. von Oppen, Franck–Condon blockade and giant fano factors in transport through single molecules, Phys. Rev. Lett.94(20), 206804 (2005)
CrossRef
ADS
Google scholar
|
[33] |
D. Kast, L. Keche, and J. Ankerhold, Charge transfer through single molecule contacts: How reliable are rate descriptions? Beilstein J. Nanotechnol.2, 416 (2011)
CrossRef
ADS
Google scholar
|
[34] |
W. Lai, Y. Cao, and Z. Ma, Current–oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature, J. Phys.: Condens. Matter24(17), 175301 (2012)
CrossRef
ADS
Google scholar
|
[35] |
W. Lai, Y. Xing, and Z. Ma, Dephasing of electrons in the Aharonov–Bohm interferometer with a single-molecular vibrational junction, J. Phys.: Condens. Matter25(20), 205304 (2013)
CrossRef
ADS
Google scholar
|
[36] |
T. Novotný, A. Donarini, and A. P. Jauho, Quantum shuttle in phase space, Phys. Rev. Lett.90(25), 256801 (2003)
CrossRef
ADS
Google scholar
|
[37] |
T. Novotný, A. Donarini, C. Flindt, and A. P. Jauho, Shot noise of a quantum shuttle, Phys. Rev. Lett.92(24), 248302 (2004)
CrossRef
ADS
Google scholar
|
[38] |
F. Haupt, F. Cavaliere, R. Fazio, and M. Sassetti, Anomalous suppression of the shot noise in a nanoelectromechanical system, Phys. Rev. B74(20), 205328 (2006)
CrossRef
ADS
Google scholar
|
[39] |
L. Y. Gorelik, S. I. Kulinich, R. I. Shekhter, M. Jonson, and V. M. Vinokur, Mechanically assisted spin-dependent transport of electrons, Phys. Rev. B71(3), 035327 (2005)
CrossRef
ADS
Google scholar
|
[40] |
R. Q. Wang, B. Wang, and D. Y. Xing, Spin valve effect in a magnetic nanoelectromechanical shuttle, Phys. Rev. Lett. 100(11), 117206 (2008)
CrossRef
ADS
Google scholar
|
[41] |
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Quantum shuttle phenomena in a nanoelectromechanical single-electron transistor, Phys. Rev. Lett.92(16), 166801 (2004)
CrossRef
ADS
Google scholar
|
[42] |
S. D. Bennett and A. A. Clerk, Laser-like instabilities in quantum nano-electromechanical systems, Phys. Rev. B74(20), 201301 (2006)
CrossRef
ADS
Google scholar
|
[43] |
A. D. Armour and A. MacKinnon, Transport via a quantum shuttle, Phys. Rev. B66(3), 035333 (2002)
CrossRef
ADS
Google scholar
|
[44] |
M. N. Kiselev, K. Kikoin, R. I. Shekhter, and V. M. Vinokur, Kondo shuttling in a nanoelectromechanical single-electron transistor, Phys. Rev. B74(23), 233403 (2006)
CrossRef
ADS
Google scholar
|
[45] |
J. Mravlje and A. Ramšak, Kondo effect and channel mixing in oscillating molecules, Phys. Rev. B78(23), 235416 (2008)
CrossRef
ADS
Google scholar
|
[46] |
J. Mravlje and A. Ramšak, Kondo effect in oscillating molecules, Phys. Status Solidi B246(5), 994 (2009)
CrossRef
ADS
Google scholar
|
[47] |
L. G. G. V. Dias da Silva, and E. Dagotto, Phonon-assisted tunneling and two-channel Kondo physics in molecular junctions, Phys. Rev. B79(15), 155302 (2009)
CrossRef
ADS
Google scholar
|
[48] |
D. Golež, J. Bonča, and R. Zitko, Vibrational Andreevˇ bound states in magnetic molecules, Phys. Rev. B86(8), 085142 (2012)
CrossRef
ADS
Google scholar
|
[49] |
J. Koch, M. E. Raikh, and F. von Oppen, Pair tunneling through single molecules, Phys. Rev. Lett.96(5), 056803 (2006)
CrossRef
ADS
Google scholar
|
[50] |
M. J. Hwang, M. S. Choi, and R. López, Pair tunneling and shot noise through a single molecule in a strong electron phonon coupling regime, Phys. Rev. B 76(16), 165312 (2007)
CrossRef
ADS
Google scholar
|
[51] |
Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, Detection of heating in current-carrying molecular junctions by Raman scattering, Nat. Nanotechnol.3(12), 727 (2008)
CrossRef
ADS
Google scholar
|
[52] |
S. W. Wu, G. V. Nazin, and W. Ho, Intramolecular photon emission from a single molecule in a scanning tunneling microscope, Phys. Rev. B77(20), 205430 (2008)
CrossRef
ADS
Google scholar
|
[53] |
D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, Simultaneous measurements of electronic conduction and raman response in molecular junctions, Nano Lett.8(3), 919 (2008)
CrossRef
ADS
Google scholar
|
[54] |
M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering from nonequilibrium molecular conduction junctions, Nano Lett.9(2), 758 (2009)
CrossRef
ADS
Google scholar
|
[55] |
M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering in current-carrying molecular junctions, J. Chem. Phys.130(14), 144109 (2009)
CrossRef
ADS
Google scholar
|
[56] |
M. Oren, M. Galperin, and A. Nitzan, Raman scattering from molecular conduction junctions: Charge transfer mechanism, Phys. Rev. B85(11), 115435 (2012)
CrossRef
ADS
Google scholar
|
[57] |
G. L. Eesley and J. R. Smith, Enhanced Raman scattering on metal surfaces, Solid State Commun.31(11), 815 (1979)
CrossRef
ADS
Google scholar
|
[58] |
J. P. Goudonnet, G. M. Begun, and E. T. Arakawa, Surfaceenhanced raman scattering on silver-coated Teflon sphere substrates, Chem. Phys. Lett.92(2), 197 (1982)
CrossRef
ADS
Google scholar
|
[59] |
H. Yamada, Y. Yamamoto, and N. Tani, Surface-enhanced raman scattering (SERS) of adsorbed molecules on smooth surfaces of metals and a metal oxide, Chem. Phys. Lett.86(4), 397 (1982)
CrossRef
ADS
Google scholar
|
[60] |
H. Wetzel, H. Gerischer, and B. Pettinger, Surface-enhanced raman scattering from silver-cyanide and silver-thiocyanate vibrations and the importance of adatoms, Chem. Phys. Lett.80(1), 159 (1981)
CrossRef
ADS
Google scholar
|
[61] |
P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. Melngailis, A. M. Hawryluk, and N. P. Economou, Surfaceenhanced raman scattering from microlithographic silver particle surfaces, Chem. Phys. Lett.82(2), 355 (1981)
CrossRef
ADS
Google scholar
|
[62] |
D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface, J. Chem. Phys.78(9), 5324 (1983)
CrossRef
ADS
Google scholar
|
[63] |
C. G. Blatchford, M. Kerker, and D. S. Wang, Surfaceenhanced Raman spectroscopy of water: Iniplications of the electromagnetic model, Chem. Phys. Lett.100(3), 230 (1983)
CrossRef
ADS
Google scholar
|
[64] |
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Spintronics of a nanoelectromechanical shuttle, Phys. Rev. Lett.95(5), 057203 (2005)
CrossRef
ADS
Google scholar
|
[65] |
R. I. Shekhter, A. Pulkin, and M. Jonson, Spintronic mechanics of a magnetic nanoshuttle, Phys. Rev. B86(10), 100404 (2012)
CrossRef
ADS
Google scholar
|
[66] |
S. Datta, W. Tian, S. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett.79(13), 2530 (1997)
CrossRef
ADS
Google scholar
|
[67] |
C. Kergueris, J. P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim, Electron transport through a metal molecule metal junction, Phys. Rev. B59(19), 12505 (1999)
CrossRef
ADS
Google scholar
|
[68] |
D. Porath, A. Bezryadin, S. de Vries, and C. Dekker , Direct measurement of electrical transport through DNA molecules, Nature403(6770), 635 (2000)
CrossRef
ADS
Google scholar
|
[69] |
H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nanomechanical oscillations in a single-C60 transistor, Nature407, 57 (2000)
CrossRef
ADS
Google scholar
|
[70] |
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science278(5336), 252 (1997)
CrossRef
ADS
Google scholar
|
[71] |
N. B. Zhitenev, H. Meng, and Z. Bao, Conductance of small molecular junctions, Phys. Rev. Lett.88(22), 226801 (2002)
CrossRef
ADS
Google scholar
|
[72] |
J. H. Schön, H. Meng, and Z. Bao, Self-assembled monolayer organic field-effect transistors, Nature413(6857), 713 (2001)
CrossRef
ADS
Google scholar
|
[73] |
C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, A [2]catenane-based solid state electronically reconfigurable switch, Science289(5482), 1172 (2000)
CrossRef
ADS
Google scholar
|
[74] |
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science286(5444), 1550 (1999)
CrossRef
ADS
Google scholar
|
[75] |
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Reproducible measurement of single-molecule conductivity, Sience294(5542), 571 (2001)
CrossRef
ADS
Google scholar
|
[76] |
Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, A. M. Price, D. L. Rawlett, and J. M. Allara, Tour, and P. S. Weiss, Conductance switching in single molecules through conformational changes, Science292(5525), 2303 (2001)
CrossRef
ADS
Google scholar
|
[77] |
O. Tal, M. Kiguchi, W. H. A. Thijssen, D. Djukic, C. Untiedt, R. H. M. Smit, and J. M. van Ruitenbeek, Molecular signature of highly conductive metal molecule metal junctions, Phys. Rev. B80(8), 085427 (2009)
CrossRef
ADS
Google scholar
|
[78] |
A. Bannani, C. Bobisch, and R. Möller, Ballistic electron microscopy of individual molecules, Science315(5820), 1824 (2007)
CrossRef
ADS
Google scholar
|
[79] |
S. W. Wu, N. Ogawa, and W. Ho, Atomic scale coupling of photons to single-molecule junctions, Science312(5778), 1362 (2006)
CrossRef
ADS
Google scholar
|
[80] |
L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature442(7105), 904 (2006)
CrossRef
ADS
Google scholar
|
[81] |
A. Erbe, C. Weiss, W. Zwerger, and R. H. Blick, Nanomechanical resonator shuttling single electrons at radio frequencies, Phys. Rev. Lett.87(9), 096106 (2001)
CrossRef
ADS
Google scholar
|
[82] |
A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, and S. E. Savel’ev, Nanomechanical electron shuttle consisting of a gold nanoparticle embedded within the gap between two gold electrodes, Phys. Rev. B79(24), 241403 (2009)
CrossRef
ADS
Google scholar
|
[83] |
A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, and S. Savel’ev, Fabrication of shuttle-junctions for nanomechanical transfer of electrons, Nanotechnology20(48), 485202 (2009)
CrossRef
ADS
Google scholar
|
[84] |
M. Galperin, M. A. Ratner, and A. Nitzan, On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett.4(9), 1605 (2004)
CrossRef
ADS
Google scholar
|
[85] |
D. W. Utami, H. S. Goan, and G. J. Milburn, Charge transport in a quantum electromechanical system, Phys. Rev. B70(7), 075303 (2004)
CrossRef
ADS
Google scholar
|
[86] |
M. Galperin, M. A. Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter19(10), 103201 (2007)
CrossRef
ADS
Google scholar
|
[87] |
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Vibrational instability due to coherent tunneling of electrons, Europhys. Lett.58(1), 99 (2002)
CrossRef
ADS
Google scholar
|
[88] |
A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Coherence and phase sensitive measurements in a quantum dot, Phys. Rev. Lett.74(20), 4047 (1995)
CrossRef
ADS
Google scholar
|
[89] |
R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, Phase measurement in a quantum dot via a double-slit interference experiment, Nature385(6615), 417 (1997)
CrossRef
ADS
Google scholar
|
[90] |
G. Cernicchiaro, T. Martin, K. Hasselbach, D. Mailly, and A. Benoit, Channel interference in a quasiballistic Aharonov Bohm experiment, Phys. Rev. Lett.79(2), 273 (1997)
CrossRef
ADS
Google scholar
|
[91] |
V. N. Stavrou and X. Hu, Charge decoherence in laterally coupled quantum dots due to electron–phonon interactions, Phys. Rev. B72(7), 075362 (2005)
CrossRef
ADS
Google scholar
|
[92] |
A. Grodecka-Grad and J. Förstner, Phonon-assisted decoherence and tunneling in quantum dot molecules, Phys. Status Solidi C8(4), 1125 (2011)
CrossRef
ADS
Google scholar
|
[93] |
K. Roszak, A. Grodecka, P. Machnikowski, and T. Kuhn, Phonon-induced decoherence for a quantum-dot spin qubit operated by Raman passage, Phys. Rev. B71(19), 195333 (2005)
CrossRef
ADS
Google scholar
|
[94] |
X. Hu, Two-spin dephasing by electron-phonon interaction in semiconductor double quantum dots, Phys. Rev. B83(16), 165322 (2011)
CrossRef
ADS
Google scholar
|
[95] |
F. L. Semião, K. Furuya, and G. J. Milburn, Vibrationenhanced quantum transport, New J. Phys.12(8), 083033 (2010)
CrossRef
ADS
Google scholar
|
[96] |
I. L. Aleiner, N. S. Wingreen, and Y. Meir, Dephasing and the orthogonality catastrophe in tunneling through a quantum dot: The “which path?” interferometer, Phys. Rev. Lett.79(19), 3740 (1997)
CrossRef
ADS
Google scholar
|
[97] |
M. Heiblum, E. Buks, R. Schuster, D. Mahalu, and V. Umansky, Dephasing in electron interference by a “whichpath” detector, Nature391(6670), 871 (1998)
CrossRef
ADS
Google scholar
|
[98] |
D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman, Controlled dephasing of electrons via a phase sensitive detector, Phys. Rev. Lett.84(25), 5820 (2000)
CrossRef
ADS
Google scholar
|
[99] |
J. König and Y. Gefen, Coherence and partial coherence in interacting electron systems, Phys. Rev. Lett.86(17), 3855 (2001)
CrossRef
ADS
Google scholar
|
[100] |
J. König and Y. Gefen, Aharonov Bohm interferometry with interacting quantum dots: Spin configurations, asymmetric interference patterns, bias-voltage-induced Aharonov Bohm oscillations, and symmetries of transport coefficients, Phys. Rev. B65(4), 045316 (2002)
CrossRef
ADS
Google scholar
|
[101] |
H. Aikawa, K. Kobayashi, A. Sano, S. Katsumoto, and Y. Iye, Observation of “partial coherence” in an Aharonov Bohm interferometer with a quantum dot, Phys. Rev. Lett.92(17), 176802 (2004)
CrossRef
ADS
Google scholar
|
[102] |
G. Luck Khym and K. Kang, Charge detection in a closedloop Aharonov–Bohm interferometer, Phys. Rev. B74(15), 153309 (2006)
CrossRef
ADS
Google scholar
|
[103] |
V. Moldoveanu, M. Tolea, and B. Tanatar, Controlled dephasing in single-dot Aharonov–Bohm interferometers, Phys. Rev. B75(4), 045309 (2007)
CrossRef
ADS
Google scholar
|
[104] |
D. Rohrlich, O. Zarchin, M. Heiblum, D. Mahalu, and V. Umansky, Controlled dephasing of a quantum dot: From coherent to sequential tunneling, Phys. Rev. Lett.98(9), 096803 (2007)
CrossRef
ADS
Google scholar
|
[105] |
A. D. Armour and M. P. Blencowe, Possibility of an electromechanical which-path interferometer, Phys. Rev. B64(3), 035311 (2001)
CrossRef
ADS
Google scholar
|
[106] |
A. D. Armour and M. Blencowe, Dephasing and thermal smearing in an electromechanical which-path device, Physica B, 2002, 316 317: 400
|
[107] |
C. Joachim, J. K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices, Nature408(6812), 541 (2000)
CrossRef
ADS
Google scholar
|
[108] |
R. I. Shekhter, Y. Galperin, L. Y. Gorelik, A. Isacsson, and M. Jonson, Shuttling of electrons and Cooper pairs, J. Phys.: Condens. Matter15(12), R441 (2003)
CrossRef
ADS
Google scholar
|
[109] |
R. I. Shekhter, L. Y. Gorelik, I. V. Krive, M. N. Kiselev, A. V. Parafilo, and M. Jonson, Nanoelectromechanics of shuttle devices, Nanomechanics1, 1 (2013)
|
[110] |
M. Galperin, M. A. Ratner, A. Nitzan, and A. Troisi, Nuclear coupling and polarization in molecular transport junctions: Beyond tunneling to function, Science319(5866), 1056 (2008)
CrossRef
ADS
Google scholar
|
[111] |
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys.81(4), 1665 (2009)
CrossRef
ADS
Google scholar
|
[112] |
X. Li, J. Luo, Y. Yang, P. Cui, and Y. Yan, Quantum master-equation approach to quantum transport through mesoscopic systems, Phys. Rev. B71(20), 205304 (2005)
CrossRef
ADS
Google scholar
|
[113] |
C. Timm, Tunneling through molecules and quantum dots: Master-equation approaches, Phys. Rev. B77(19), 195416 (2008)
CrossRef
ADS
Google scholar
|
[114] |
O. Sauret, D. Feinberg, and T. Martin, Quantum master equations for the superconductor–quantum dot entangler, Phys. Rev. B 70(24), 245313 (2004)
CrossRef
ADS
Google scholar
|
[115] |
H. B. Sun and G. Milburn, Quantum open-systems approach to current noise in resonant tunneling junctions, Phys. Rev. B59(16), 10748 (1999)
CrossRef
ADS
Google scholar
|
[116] |
C. Flindt, T. Novotny, and A. P. Jauho, Current noise in a vibrating quantum dot array, Phys. Rev. B70(20), 205334 (2004)
CrossRef
ADS
Google scholar
|
[117] |
S. A. Gurvitz, D. Mozyrsky, and G. P. Berman, Coherent effects in magnetotransport through Zeeman-split levels, Phys. Rev. B72(20), 205341 (2005)
CrossRef
ADS
Google scholar
|
[118] |
R. Härtle and M. Thoss, Resonant electron transport in single-molecule junctions: Vibrational excitation, rectification, negative differential resistance, and local cooling, Phys. Rev. B83(11), 115414 (2011)
CrossRef
ADS
Google scholar
|
[119] |
B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Quantized conductance of point contacts in a twodimensional electron gas, Phys. Rev. Lett.60(9), 848 (1988)
CrossRef
ADS
Google scholar
|
[120] |
D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacockt, D. A. Ritchie, and G. A. C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. Chem.21(8), L209 (1988)
|
[121] |
D. K. C. Macdonald, Spontaneous fluctuations, Rep. Prog. Phys.12(1), 56 (1949)
CrossRef
ADS
Google scholar
|
[122] |
C. Flindt, T. Novotny, and A. P. Jauho, Current noise spectrum of a quantum shuttle, Physica E29(1–2), 411 (2005)
CrossRef
ADS
Google scholar
|
[123] |
C. Flindt, T. Novotny, and A. P. Jauho, Full counting statistics of nano-electromechanical systems, Europhys. Lett.69(3), 475 (2005)
CrossRef
ADS
Google scholar
|
[124] |
M. Merlo, F. Haupt, F. Cavaliere, and M. Sassetti, SubPoissonian phononic population in a nanoelectromechanical system, New J. Phys.10(2), 023008 (2008)
CrossRef
ADS
Google scholar
|
[125] |
D. A. Rodrigues, J. Imbers, and A. D. Armour, Quantum dynamics of a resonator driven by a superconducting single-electron transistor: A solid-state analogue of the micromaser, Phys. Rev. Lett.98(6), 067204 (2007)
CrossRef
ADS
Google scholar
|
[126] |
A. Y. Smirnov, L. G. Mourokh, and N. J. M. Horing, Temperature dependence of electron transport through a quantum shuttle, Phys. Rev. B 69(15), 155310 (2004)
CrossRef
ADS
Google scholar
|
[127] |
C. Weiss and W. Zwerger, Accuracy of a mechanical singleelectron shuttle, Europhys. Lett.47(1), 97 (1999)
CrossRef
ADS
Google scholar
|
[128] |
M. Galperin, A. Nitzan, and M. A. Ratner, Resonant inelastic tunneling in molecular junctions, Phys. Rev. B73(4), 045314 (2006)
CrossRef
ADS
Google scholar
|
[129] |
F. Domínguez, S. Kohler, and G. Platero, Phonon-mediated decoherence in triple quantum dot interferometers, Phys. Rev. B83(23), 235319 (2011)
CrossRef
ADS
Google scholar
|
[130] |
J. Friedel, The distribution of electrons round impurities in monovalent metals, Philos. Mag.43(337), 153 (1952)
CrossRef
ADS
Google scholar
|
[131] |
J. M. Ziman, Principles of the Theory of Solids, Cambridge: Cambridge University Press, 2nd Ed., 1972, page 157
CrossRef
ADS
Google scholar
|
[132] |
G. D. Mahan, Many-Particle Physics, New York: Kluwer Academic/Plenum Publishers, 3rd Ed., 2000, page 195
|
[133] |
J. S. Langer and V. Ambegaokar, Friedel sum rule for a system of interacting electrons, Phys. Rev.121(4), 1090 (1961)
CrossRef
ADS
Google scholar
|
[134] |
A. L. Yeyati and M. Büttiker, Aharonov Bohm oscillations in a mesoscopic ring with a quantum dot, Phys. Rev. B52(20), R14360 (1995)
CrossRef
ADS
Google scholar
|
[135] |
S. Bandopadhyay and P. S. Deo, Friedel sum rule for a singlechannel quantum wire, Phys. Rev. B68(11), 113301 (2003)
CrossRef
ADS
Google scholar
|
[136] |
M. Rontani, Friedel sum rule for an interacting multiorbital quantum dot, Phys. Rev. Lett.97(7), 076801 (2006)
CrossRef
ADS
Google scholar
|
[137] |
P. S. Deo, Nondispersive backscattering in quantum wires, Phys. Rev. B75(23), 235330 (2007)
CrossRef
ADS
Google scholar
|
[138] |
M. R. Galpin and D. E. Logan, Anderson impurity model in a semiconductor, Phys. Rev. B77(19), 195108 (2008)
CrossRef
ADS
Google scholar
|
[139] |
B. Rosenow and Y. Gefen, Dephasing by a zero-temperature detector and the Friedel sum rule, Phys. Rev. Lett.108(25), 256805 (2012)
CrossRef
ADS
Google scholar
|
[140] |
H. M. Pastawskia, L. E. F. Foa Torresa, and E. Medina, Electron–phonon interaction and electronic decoherence in molecular conductors, Chem. Phys.281(23), 257 (2002)
CrossRef
ADS
Google scholar
|
[141] |
A. Ueda and M. Eto, Resonant tunneling and Fano resonance in quantum dots with electron phonon interaction, Phys. Rev. B73(23), 235353 (2006)
CrossRef
ADS
Google scholar
|
[142] |
H. W. Lee, Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport, Phys. Rev. Lett.82(11), 2358 (1999)
CrossRef
ADS
Google scholar
|
[143] |
H. Akera, Aharonov–Bohm effect and electron correlation in quantum dots, Phys. Rev. B47(11), 6835 (1993)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |