Single molecular shuttle-junction: Shot noise and decoherence

Wenxi Lai, Chao Zhang, Zhongshui Ma

PDF(1001 KB)
PDF(1001 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (1) : 108501. DOI: 10.1007/s11467-014-0443-z
Condensed Matter, Materials Physics, and Statistical Physics
Condensed Matter, Materials Physics, and Statistical Physics

Single molecular shuttle-junction: Shot noise and decoherence

Author information +
History +

Abstract

Single molecular shuttle-junction is one kind of nanoscale electromechanical tunneling system. In this junction, a molecular island oscillates depending on its charge occupation, and this charge dependent oscillation leads to modulation of electron tunneling through the molecular island. This paper reviews recent development on the study of current, shot noise and decoherence of electrons in the single molecular shuttle-junction. We will give detailed discussion on this topic using the typical system model, the theory of fully quantum master equation and the Aharonov–Bohm interferometer.

Graphical abstract

Keywords

molecular shuttle-junction / master equation / shot noise / decoherence

Cite this article

Download citation ▾
Wenxi Lai, Chao Zhang, Zhongshui Ma. Single molecular shuttle-junction: Shot noise and decoherence. Front. Phys., 2015, 10(1): 108501 https://doi.org/10.1007/s11467-014-0443-z

References

[1]
L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo, R. I. Shekhter , and M. Jonson, Shuttle mechanism for charge transfer in coulomb blockade nanostructures, Phys. Rev. Lett.80(20), 4526 (1998)
CrossRef ADS Google scholar
[2]
A. Donarini, T. Novotn’y, and A. P. Jauho, Simple models suffice for the single-dot quantum shuttle, New J. Phys.7(1), 237 (2005)
CrossRef ADS Google scholar
[3]
D. W. Utami, H. S. Goan, C. A. Holmes, and G. J. Milburn, Quantum noise in the electromechanical shuttle: Quantum master equation treatment, Phys. Rev. B74(1), 014303 (2006)
CrossRef ADS Google scholar
[4]
D. Mozyrsky and I. Martin, Quantum classical transition induced by electrical measurement, Phys. Rev. Lett. 89(1), 018301 (2002)
CrossRef ADS Google scholar
[5]
D. Mozyrsky, I. Martin, and M. B. Hastings, Quantumlimited sensitivity of single-electron-transistor-based displacement detectors, Phys. Rev. Lett.92(1), 018303 (2004)
CrossRef ADS Google scholar
[6]
S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, and H. S. J. Van Der Zant, Motion detection of a micromechanical resonator embedded in a d.c. SQUID, Nat. Phys.4(10), 785 (2008)
CrossRef ADS Google scholar
[7]
M. P. Blencowe and M. N. Wybourne, Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor,Appl. Phys. Lett.77( 23), 3845 (2000)
CrossRef ADS Google scholar
[8]
J. Twamley, D. W. Utami, H. S. Goan, and G. Milburn, Spin-detection in a quantum electromechanical shuttle system, New J. Phys.8(5), 63 (2006)
CrossRef ADS Google scholar
[9]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Single spin detection by magnetic resonance force microscopy, Nature430(6997), 329 (2004)
CrossRef ADS Google scholar
[10]
A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature392, 160 (1998)
CrossRef ADS Google scholar
[11]
H. B. Meerwaldt, G. Labadze, B. H. Schneider, A. Taspinar, Ya. M. Blanter, H. S. J. van der Zant, and G. A. Steele, Probing the charge of a quantum dot with a nanomechanical resonator, Phys. Rev. B86(11), 115454 (2012)
CrossRef ADS Google scholar
[12]
K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol.3(9), 533 (2008)
CrossRef ADS Google scholar
[13]
J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Thermopower of single-molecule devices, Phys. Rev. B70(19), 195107 (2004)
CrossRef ADS Google scholar
[14]
M. Galperin, K. Saito, A. V. Balatsky, and A. Nitzan, Cooling mechanisms in molecular conduction junctions, Phys. Rev. B80(11), 115427 (2009)
CrossRef ADS Google scholar
[15]
G. Romano, A. Gagliardi, A. Pecchia, and A. Di Carlo, Heating and cooling mechanisms in single-molecule junctions, Phys. Rev. B81(11), 115438 (2010)
CrossRef ADS Google scholar
[16]
G. Schulze, K. J. Franke, A. Gagliardi, G. Romano, C. S. Lin, A. L. Rosa, T. A. Niehaus, Th. Frauenheim, A. Di Carlo, A. Pecchia, and J. I. Pascual, Resonant electron heating and molecular phonon cooling in single C60 junctions, Phys. Rev. Lett.100(13), 136801 (2008)
CrossRef ADS Google scholar
[17]
P. C. E. Stamp and C. Zhang, Theory of Bloch delocalization and quantum diffusion of heavy particles in insulators, Phys. Rev. Lett.66(14), 1902 (1991)
CrossRef ADS Google scholar
[18]
C. Zhang and Y. Takahashi, Dynamical conductivity of a two-layered structure with electron acoustic phonon coupling, J. Phys.: Condens. Matter5(28), 5009 (1993)
CrossRef ADS Google scholar
[19]
A. Nocera, C. A. Perroni, V. Marigliano Ramaglia, and V. Cataudella, Stochastic dynamics for a single vibrational mode in molecular junctions, Phys. Rev. B83(11), 115420 (2011)
CrossRef ADS Google scholar
[20]
A. Metelmann and T. Brandes, Adiabaticity in semiclassical nanoelectromechanical systems, Phys. Rev. B84(15), 155455 (2011)
CrossRef ADS Google scholar
[21]
T. Koch, J. Loos, A. Alvermann, and H. Fehske, Nonequilibrium transport through molecular junctions in the quantum regime, Phys. Rev. B84(12), 125131 (2011)
CrossRef ADS Google scholar
[22]
R. C. Monreal, F. Flores, and A. Martin-Rodero, Nonequilibrium transport in molecular junctions with strong electron-phonon interactions, Phys. Rev. B82(23), 235412 (2010)
CrossRef ADS Google scholar
[23]
M. Galperin, M. A. Ratner, and A. Nitzan, Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips, J. Chem. Phys.121(23), 11965 (2004)
CrossRef ADS Google scholar
[24]
M. Galperin, M. A. Ratner, and A. Nitzan, On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett.4(9), 1605 (2004)
CrossRef ADS Google scholar
[25]
L. Mühlbacher and E. Rabani, Real-time path integral approach to nonequilibrium many-body quantum systems, Phys. Rev. Lett.100(17), 176403 (2008)
CrossRef ADS Google scholar
[26]
D. F. Walls and G. J. Milburn, Quantum Optics, New York: Springer-Verlag, 1994, p91
[27]
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997, page 249
CrossRef ADS Google scholar
[28]
S. A. Gurvitz and Y. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B53(23), 15932 (1996)
CrossRef ADS Google scholar
[29]
D. Boese and H. Schoeller, Influence of nanomechanical properties on single-electron tunneling: A vibrating singleelectron transistor, Europhys. Lett.54(5), 668 (2001)
CrossRef ADS Google scholar
[30]
K. D. McCarthy, N. Prokofev, and M. T. Tuominen, Incoherent dynamics of vibrating single-molecule transistors, Phys. Rev. B67(24), 245415 (2003)
CrossRef ADS Google scholar
[31]
S. Braig and K. Flensberg, Vibrational sidebands and dissipative tunneling in molecular transistors, Phys. Rev. B68(20), 205324 (2003)
CrossRef ADS Google scholar
[32]
J. Koch and F. von Oppen, Franck–Condon blockade and giant fano factors in transport through single molecules, Phys. Rev. Lett.94(20), 206804 (2005)
CrossRef ADS Google scholar
[33]
D. Kast, L. Keche, and J. Ankerhold, Charge transfer through single molecule contacts: How reliable are rate descriptions? Beilstein J. Nanotechnol.2, 416 (2011)
CrossRef ADS Google scholar
[34]
W. Lai, Y. Cao, and Z. Ma, Current–oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature, J. Phys.: Condens. Matter24(17), 175301 (2012)
CrossRef ADS Google scholar
[35]
W. Lai, Y. Xing, and Z. Ma, Dephasing of electrons in the Aharonov–Bohm interferometer with a single-molecular vibrational junction, J. Phys.: Condens. Matter25(20), 205304 (2013)
CrossRef ADS Google scholar
[36]
T. Novotný, A. Donarini, and A. P. Jauho, Quantum shuttle in phase space, Phys. Rev. Lett.90(25), 256801 (2003)
CrossRef ADS Google scholar
[37]
T. Novotný, A. Donarini, C. Flindt, and A. P. Jauho, Shot noise of a quantum shuttle, Phys. Rev. Lett.92(24), 248302 (2004)
CrossRef ADS Google scholar
[38]
F. Haupt, F. Cavaliere, R. Fazio, and M. Sassetti, Anomalous suppression of the shot noise in a nanoelectromechanical system, Phys. Rev. B74(20), 205328 (2006)
CrossRef ADS Google scholar
[39]
L. Y. Gorelik, S. I. Kulinich, R. I. Shekhter, M. Jonson, and V. M. Vinokur, Mechanically assisted spin-dependent transport of electrons, Phys. Rev. B71(3), 035327 (2005)
CrossRef ADS Google scholar
[40]
R. Q. Wang, B. Wang, and D. Y. Xing, Spin valve effect in a magnetic nanoelectromechanical shuttle, Phys. Rev. Lett. 100(11), 117206 (2008)
CrossRef ADS Google scholar
[41]
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Quantum shuttle phenomena in a nanoelectromechanical single-electron transistor, Phys. Rev. Lett.92(16), 166801 (2004)
CrossRef ADS Google scholar
[42]
S. D. Bennett and A. A. Clerk, Laser-like instabilities in quantum nano-electromechanical systems, Phys. Rev. B74(20), 201301 (2006)
CrossRef ADS Google scholar
[43]
A. D. Armour and A. MacKinnon, Transport via a quantum shuttle, Phys. Rev. B66(3), 035333 (2002)
CrossRef ADS Google scholar
[44]
M. N. Kiselev, K. Kikoin, R. I. Shekhter, and V. M. Vinokur, Kondo shuttling in a nanoelectromechanical single-electron transistor, Phys. Rev. B74(23), 233403 (2006)
CrossRef ADS Google scholar
[45]
J. Mravlje and A. Ramšak, Kondo effect and channel mixing in oscillating molecules, Phys. Rev. B78(23), 235416 (2008)
CrossRef ADS Google scholar
[46]
J. Mravlje and A. Ramšak, Kondo effect in oscillating molecules, Phys. Status Solidi B246(5), 994 (2009)
CrossRef ADS Google scholar
[47]
L. G. G. V. Dias da Silva, and E. Dagotto, Phonon-assisted tunneling and two-channel Kondo physics in molecular junctions, Phys. Rev. B79(15), 155302 (2009)
CrossRef ADS Google scholar
[48]
D. Golež, J. Bonča, and R. Zitko, Vibrational Andreevˇ bound states in magnetic molecules, Phys. Rev. B86(8), 085142 (2012)
CrossRef ADS Google scholar
[49]
J. Koch, M. E. Raikh, and F. von Oppen, Pair tunneling through single molecules, Phys. Rev. Lett.96(5), 056803 (2006)
CrossRef ADS Google scholar
[50]
M. J. Hwang, M. S. Choi, and R. López, Pair tunneling and shot noise through a single molecule in a strong electron phonon coupling regime, Phys. Rev. B 76(16), 165312 (2007)
CrossRef ADS Google scholar
[51]
Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, Detection of heating in current-carrying molecular junctions by Raman scattering, Nat. Nanotechnol.3(12), 727 (2008)
CrossRef ADS Google scholar
[52]
S. W. Wu, G. V. Nazin, and W. Ho, Intramolecular photon emission from a single molecule in a scanning tunneling microscope, Phys. Rev. B77(20), 205430 (2008)
CrossRef ADS Google scholar
[53]
D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, Simultaneous measurements of electronic conduction and raman response in molecular junctions, Nano Lett.8(3), 919 (2008)
CrossRef ADS Google scholar
[54]
M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering from nonequilibrium molecular conduction junctions, Nano Lett.9(2), 758 (2009)
CrossRef ADS Google scholar
[55]
M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering in current-carrying molecular junctions, J. Chem. Phys.130(14), 144109 (2009)
CrossRef ADS Google scholar
[56]
M. Oren, M. Galperin, and A. Nitzan, Raman scattering from molecular conduction junctions: Charge transfer mechanism, Phys. Rev. B85(11), 115435 (2012)
CrossRef ADS Google scholar
[57]
G. L. Eesley and J. R. Smith, Enhanced Raman scattering on metal surfaces, Solid State Commun.31(11), 815 (1979)
CrossRef ADS Google scholar
[58]
J. P. Goudonnet, G. M. Begun, and E. T. Arakawa, Surfaceenhanced raman scattering on silver-coated Teflon sphere substrates, Chem. Phys. Lett.92(2), 197 (1982)
CrossRef ADS Google scholar
[59]
H. Yamada, Y. Yamamoto, and N. Tani, Surface-enhanced raman scattering (SERS) of adsorbed molecules on smooth surfaces of metals and a metal oxide, Chem. Phys. Lett.86(4), 397 (1982)
CrossRef ADS Google scholar
[60]
H. Wetzel, H. Gerischer, and B. Pettinger, Surface-enhanced raman scattering from silver-cyanide and silver-thiocyanate vibrations and the importance of adatoms, Chem. Phys. Lett.80(1), 159 (1981)
CrossRef ADS Google scholar
[61]
P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. Melngailis, A. M. Hawryluk, and N. P. Economou, Surfaceenhanced raman scattering from microlithographic silver particle surfaces, Chem. Phys. Lett.82(2), 355 (1981)
CrossRef ADS Google scholar
[62]
D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface, J. Chem. Phys.78(9), 5324 (1983)
CrossRef ADS Google scholar
[63]
C. G. Blatchford, M. Kerker, and D. S. Wang, Surfaceenhanced Raman spectroscopy of water: Iniplications of the electromagnetic model, Chem. Phys. Lett.100(3), 230 (1983)
CrossRef ADS Google scholar
[64]
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Spintronics of a nanoelectromechanical shuttle, Phys. Rev. Lett.95(5), 057203 (2005)
CrossRef ADS Google scholar
[65]
R. I. Shekhter, A. Pulkin, and M. Jonson, Spintronic mechanics of a magnetic nanoshuttle, Phys. Rev. B86(10), 100404 (2012)
CrossRef ADS Google scholar
[66]
S. Datta, W. Tian, S. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett.79(13), 2530 (1997)
CrossRef ADS Google scholar
[67]
C. Kergueris, J. P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim, Electron transport through a metal molecule metal junction, Phys. Rev. B59(19), 12505 (1999)
CrossRef ADS Google scholar
[68]
D. Porath, A. Bezryadin, S. de Vries, and C. Dekker , Direct measurement of electrical transport through DNA molecules, Nature403(6770), 635 (2000)
CrossRef ADS Google scholar
[69]
H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nanomechanical oscillations in a single-C60 transistor, Nature407, 57 (2000)
CrossRef ADS Google scholar
[70]
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science278(5336), 252 (1997)
CrossRef ADS Google scholar
[71]
N. B. Zhitenev, H. Meng, and Z. Bao, Conductance of small molecular junctions, Phys. Rev. Lett.88(22), 226801 (2002)
CrossRef ADS Google scholar
[72]
J. H. Schön, H. Meng, and Z. Bao, Self-assembled monolayer organic field-effect transistors, Nature413(6857), 713 (2001)
CrossRef ADS Google scholar
[73]
C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, A [2]catenane-based solid state electronically reconfigurable switch, Science289(5482), 1172 (2000)
CrossRef ADS Google scholar
[74]
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science286(5444), 1550 (1999)
CrossRef ADS Google scholar
[75]
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Reproducible measurement of single-molecule conductivity, Sience294(5542), 571 (2001)
CrossRef ADS Google scholar
[76]
Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, A. M. Price, D. L. Rawlett, and J. M. Allara, Tour, and P. S. Weiss, Conductance switching in single molecules through conformational changes, Science292(5525), 2303 (2001)
CrossRef ADS Google scholar
[77]
O. Tal, M. Kiguchi, W. H. A. Thijssen, D. Djukic, C. Untiedt, R. H. M. Smit, and J. M. van Ruitenbeek, Molecular signature of highly conductive metal molecule metal junctions, Phys. Rev. B80(8), 085427 (2009)
CrossRef ADS Google scholar
[78]
A. Bannani, C. Bobisch, and R. Möller, Ballistic electron microscopy of individual molecules, Science315(5820), 1824 (2007)
CrossRef ADS Google scholar
[79]
S. W. Wu, N. Ogawa, and W. Ho, Atomic scale coupling of photons to single-molecule junctions, Science312(5778), 1362 (2006)
CrossRef ADS Google scholar
[80]
L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature442(7105), 904 (2006)
CrossRef ADS Google scholar
[81]
A. Erbe, C. Weiss, W. Zwerger, and R. H. Blick, Nanomechanical resonator shuttling single electrons at radio frequencies, Phys. Rev. Lett.87(9), 096106 (2001)
CrossRef ADS Google scholar
[82]
A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, and S. E. Savel’ev, Nanomechanical electron shuttle consisting of a gold nanoparticle embedded within the gap between two gold electrodes, Phys. Rev. B79(24), 241403 (2009)
CrossRef ADS Google scholar
[83]
A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, and S. Savel’ev, Fabrication of shuttle-junctions for nanomechanical transfer of electrons, Nanotechnology20(48), 485202 (2009)
CrossRef ADS Google scholar
[84]
M. Galperin, M. A. Ratner, and A. Nitzan, On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett.4(9), 1605 (2004)
CrossRef ADS Google scholar
[85]
D. W. Utami, H. S. Goan, and G. J. Milburn, Charge transport in a quantum electromechanical system, Phys. Rev. B70(7), 075303 (2004)
CrossRef ADS Google scholar
[86]
M. Galperin, M. A. Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter19(10), 103201 (2007)
CrossRef ADS Google scholar
[87]
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Vibrational instability due to coherent tunneling of electrons, Europhys. Lett.58(1), 99 (2002)
CrossRef ADS Google scholar
[88]
A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Coherence and phase sensitive measurements in a quantum dot, Phys. Rev. Lett.74(20), 4047 (1995)
CrossRef ADS Google scholar
[89]
R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, Phase measurement in a quantum dot via a double-slit interference experiment, Nature385(6615), 417 (1997)
CrossRef ADS Google scholar
[90]
G. Cernicchiaro, T. Martin, K. Hasselbach, D. Mailly, and A. Benoit, Channel interference in a quasiballistic Aharonov Bohm experiment, Phys. Rev. Lett.79(2), 273 (1997)
CrossRef ADS Google scholar
[91]
V. N. Stavrou and X. Hu, Charge decoherence in laterally coupled quantum dots due to electron–phonon interactions, Phys. Rev. B72(7), 075362 (2005)
CrossRef ADS Google scholar
[92]
A. Grodecka-Grad and J. Förstner, Phonon-assisted decoherence and tunneling in quantum dot molecules, Phys. Status Solidi C8(4), 1125 (2011)
CrossRef ADS Google scholar
[93]
K. Roszak, A. Grodecka, P. Machnikowski, and T. Kuhn, Phonon-induced decoherence for a quantum-dot spin qubit operated by Raman passage, Phys. Rev. B71(19), 195333 (2005)
CrossRef ADS Google scholar
[94]
X. Hu, Two-spin dephasing by electron-phonon interaction in semiconductor double quantum dots, Phys. Rev. B83(16), 165322 (2011)
CrossRef ADS Google scholar
[95]
F. L. Semião, K. Furuya, and G. J. Milburn, Vibrationenhanced quantum transport, New J. Phys.12(8), 083033 (2010)
CrossRef ADS Google scholar
[96]
I. L. Aleiner, N. S. Wingreen, and Y. Meir, Dephasing and the orthogonality catastrophe in tunneling through a quantum dot: The “which path?” interferometer, Phys. Rev. Lett.79(19), 3740 (1997)
CrossRef ADS Google scholar
[97]
M. Heiblum, E. Buks, R. Schuster, D. Mahalu, and V. Umansky, Dephasing in electron interference by a “whichpath” detector, Nature391(6670), 871 (1998)
CrossRef ADS Google scholar
[98]
D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman, Controlled dephasing of electrons via a phase sensitive detector, Phys. Rev. Lett.84(25), 5820 (2000)
CrossRef ADS Google scholar
[99]
J. König and Y. Gefen, Coherence and partial coherence in interacting electron systems, Phys. Rev. Lett.86(17), 3855 (2001)
CrossRef ADS Google scholar
[100]
J. König and Y. Gefen, Aharonov Bohm interferometry with interacting quantum dots: Spin configurations, asymmetric interference patterns, bias-voltage-induced Aharonov Bohm oscillations, and symmetries of transport coefficients, Phys. Rev. B65(4), 045316 (2002)
CrossRef ADS Google scholar
[101]
H. Aikawa, K. Kobayashi, A. Sano, S. Katsumoto, and Y. Iye, Observation of “partial coherence” in an Aharonov Bohm interferometer with a quantum dot, Phys. Rev. Lett.92(17), 176802 (2004)
CrossRef ADS Google scholar
[102]
G. Luck Khym and K. Kang, Charge detection in a closedloop Aharonov–Bohm interferometer, Phys. Rev. B74(15), 153309 (2006)
CrossRef ADS Google scholar
[103]
V. Moldoveanu, M. Tolea, and B. Tanatar, Controlled dephasing in single-dot Aharonov–Bohm interferometers, Phys. Rev. B75(4), 045309 (2007)
CrossRef ADS Google scholar
[104]
D. Rohrlich, O. Zarchin, M. Heiblum, D. Mahalu, and V. Umansky, Controlled dephasing of a quantum dot: From coherent to sequential tunneling, Phys. Rev. Lett.98(9), 096803 (2007)
CrossRef ADS Google scholar
[105]
A. D. Armour and M. P. Blencowe, Possibility of an electromechanical which-path interferometer, Phys. Rev. B64(3), 035311 (2001)
CrossRef ADS Google scholar
[106]
A. D. Armour and M. Blencowe, Dephasing and thermal smearing in an electromechanical which-path device, Physica B, 2002, 316 317: 400
[107]
C. Joachim, J. K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices, Nature408(6812), 541 (2000)
CrossRef ADS Google scholar
[108]
R. I. Shekhter, Y. Galperin, L. Y. Gorelik, A. Isacsson, and M. Jonson, Shuttling of electrons and Cooper pairs, J. Phys.: Condens. Matter15(12), R441 (2003)
CrossRef ADS Google scholar
[109]
R. I. Shekhter, L. Y. Gorelik, I. V. Krive, M. N. Kiselev, A. V. Parafilo, and M. Jonson, Nanoelectromechanics of shuttle devices, Nanomechanics1, 1 (2013)
[110]
M. Galperin, M. A. Ratner, A. Nitzan, and A. Troisi, Nuclear coupling and polarization in molecular transport junctions: Beyond tunneling to function, Science319(5866), 1056 (2008)
CrossRef ADS Google scholar
[111]
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys.81(4), 1665 (2009)
CrossRef ADS Google scholar
[112]
X. Li, J. Luo, Y. Yang, P. Cui, and Y. Yan, Quantum master-equation approach to quantum transport through mesoscopic systems, Phys. Rev. B71(20), 205304 (2005)
CrossRef ADS Google scholar
[113]
C. Timm, Tunneling through molecules and quantum dots: Master-equation approaches, Phys. Rev. B77(19), 195416 (2008)
CrossRef ADS Google scholar
[114]
O. Sauret, D. Feinberg, and T. Martin, Quantum master equations for the superconductor–quantum dot entangler, Phys. Rev. B 70(24), 245313 (2004)
CrossRef ADS Google scholar
[115]
H. B. Sun and G. Milburn, Quantum open-systems approach to current noise in resonant tunneling junctions, Phys. Rev. B59(16), 10748 (1999)
CrossRef ADS Google scholar
[116]
C. Flindt, T. Novotny, and A. P. Jauho, Current noise in a vibrating quantum dot array, Phys. Rev. B70(20), 205334 (2004)
CrossRef ADS Google scholar
[117]
S. A. Gurvitz, D. Mozyrsky, and G. P. Berman, Coherent effects in magnetotransport through Zeeman-split levels, Phys. Rev. B72(20), 205341 (2005)
CrossRef ADS Google scholar
[118]
R. Härtle and M. Thoss, Resonant electron transport in single-molecule junctions: Vibrational excitation, rectification, negative differential resistance, and local cooling, Phys. Rev. B83(11), 115414 (2011)
CrossRef ADS Google scholar
[119]
B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Quantized conductance of point contacts in a twodimensional electron gas, Phys. Rev. Lett.60(9), 848 (1988)
CrossRef ADS Google scholar
[120]
D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacockt, D. A. Ritchie, and G. A. C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. Chem.21(8), L209 (1988)
[121]
D. K. C. Macdonald, Spontaneous fluctuations, Rep. Prog. Phys.12(1), 56 (1949)
CrossRef ADS Google scholar
[122]
C. Flindt, T. Novotny, and A. P. Jauho, Current noise spectrum of a quantum shuttle, Physica E29(1–2), 411 (2005)
CrossRef ADS Google scholar
[123]
C. Flindt, T. Novotny, and A. P. Jauho, Full counting statistics of nano-electromechanical systems, Europhys. Lett.69(3), 475 (2005)
CrossRef ADS Google scholar
[124]
M. Merlo, F. Haupt, F. Cavaliere, and M. Sassetti, SubPoissonian phononic population in a nanoelectromechanical system, New J. Phys.10(2), 023008 (2008)
CrossRef ADS Google scholar
[125]
D. A. Rodrigues, J. Imbers, and A. D. Armour, Quantum dynamics of a resonator driven by a superconducting single-electron transistor: A solid-state analogue of the micromaser, Phys. Rev. Lett.98(6), 067204 (2007)
CrossRef ADS Google scholar
[126]
A. Y. Smirnov, L. G. Mourokh, and N. J. M. Horing, Temperature dependence of electron transport through a quantum shuttle, Phys. Rev. B 69(15), 155310 (2004)
CrossRef ADS Google scholar
[127]
C. Weiss and W. Zwerger, Accuracy of a mechanical singleelectron shuttle, Europhys. Lett.47(1), 97 (1999)
CrossRef ADS Google scholar
[128]
M. Galperin, A. Nitzan, and M. A. Ratner, Resonant inelastic tunneling in molecular junctions, Phys. Rev. B73(4), 045314 (2006)
CrossRef ADS Google scholar
[129]
F. Domínguez, S. Kohler, and G. Platero, Phonon-mediated decoherence in triple quantum dot interferometers, Phys. Rev. B83(23), 235319 (2011)
CrossRef ADS Google scholar
[130]
J. Friedel, The distribution of electrons round impurities in monovalent metals, Philos. Mag.43(337), 153 (1952)
CrossRef ADS Google scholar
[131]
J. M. Ziman, Principles of the Theory of Solids, Cambridge: Cambridge University Press, 2nd Ed., 1972, page 157
CrossRef ADS Google scholar
[132]
G. D. Mahan, Many-Particle Physics, New York: Kluwer Academic/Plenum Publishers, 3rd Ed., 2000, page 195
[133]
J. S. Langer and V. Ambegaokar, Friedel sum rule for a system of interacting electrons, Phys. Rev.121(4), 1090 (1961)
CrossRef ADS Google scholar
[134]
A. L. Yeyati and M. Büttiker, Aharonov Bohm oscillations in a mesoscopic ring with a quantum dot, Phys. Rev. B52(20), R14360 (1995)
CrossRef ADS Google scholar
[135]
S. Bandopadhyay and P. S. Deo, Friedel sum rule for a singlechannel quantum wire, Phys. Rev. B68(11), 113301 (2003)
CrossRef ADS Google scholar
[136]
M. Rontani, Friedel sum rule for an interacting multiorbital quantum dot, Phys. Rev. Lett.97(7), 076801 (2006)
CrossRef ADS Google scholar
[137]
P. S. Deo, Nondispersive backscattering in quantum wires, Phys. Rev. B75(23), 235330 (2007)
CrossRef ADS Google scholar
[138]
M. R. Galpin and D. E. Logan, Anderson impurity model in a semiconductor, Phys. Rev. B77(19), 195108 (2008)
CrossRef ADS Google scholar
[139]
B. Rosenow and Y. Gefen, Dephasing by a zero-temperature detector and the Friedel sum rule, Phys. Rev. Lett.108(25), 256805 (2012)
CrossRef ADS Google scholar
[140]
H. M. Pastawskia, L. E. F. Foa Torresa, and E. Medina, Electron–phonon interaction and electronic decoherence in molecular conductors, Chem. Phys.281(23), 257 (2002)
CrossRef ADS Google scholar
[141]
A. Ueda and M. Eto, Resonant tunneling and Fano resonance in quantum dots with electron phonon interaction, Phys. Rev. B73(23), 235353 (2006)
CrossRef ADS Google scholar
[142]
H. W. Lee, Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport, Phys. Rev. Lett.82(11), 2358 (1999)
CrossRef ADS Google scholar
[143]
H. Akera, Aharonov–Bohm effect and electron correlation in quantum dots, Phys. Rev. B47(11), 6835 (1993)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1001 KB)

Accesses

Citations

Detail

Sections
Recommended

/