Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers
Guan-Xing Guo, Lei Zhang, Yong Zhang
Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers
Because of the many potential medical applications of nanoparticles, considerable research has been conducted on the interactions between nanoparticles and biomembranes. We employed coarsegrained molecular dynamics simulations to study the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes. Diffusion coefficients and scaling factors are adopted to quantify the diffusivity of the biomembranes, and the rupture tension is used to measure the lateral strength of the lipid bilayer. According to our simulations, all wrapped nanoparticles, except those wrapped by dipalmitoyl-glycero-phosphoglycerol, can be inserted into the bilayers. Our simulations also reveal that the bilayers remain in free diffusion after the nanoparticle insertions while their diffusion coefficient can be altered significantly. The polyhydroxylated single-walled nanotubes lead to significant changes to the lateral strength of biomembranes and this effect depends on the quantity of the inserted nanoparticles. The simulations demonstrate the feasibility of using these methods to deliver nanoparticles while some suggestions are given for choosing the appropriate lipids for wrapping. The results also suggest that the functionalized nanoparticles could be applied in strengthening or weakening the lateral strength of biomembranes for specific purposes.
lipid bilayer / carbon nanoparticle / molecular dynamics
[1] |
M. E. Samberg, S. J. Oldenburg, and N. A. Monteiro-Riviere, Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro, Environ. Health Perspect.118(3), 407 (2010)
CrossRef
ADS
Google scholar
|
[2] |
B. J. Marquis, S. A. Love, K. L. Braun, and C. L. Haynes, Analytical methods to assess nanoparticle toxicity, Analyst134(3), 425 (2009)
CrossRef
ADS
Google scholar
|
[3] |
X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, and J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in caenorhabditis elegans, Environ. Sci. Technol.46(2), 1119 (2012)
CrossRef
ADS
Google scholar
|
[4] |
M. Schulz, A. Olubummo, and W. H. Binder, Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes, Soft Matter8(18), 4849 (2012)
CrossRef
ADS
Google scholar
|
[5] |
A. A. Skandani, R. Zeineldin, and M. Al-Haik, Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes, Langmuir28(20), 7872 (2012)
CrossRef
ADS
Google scholar
|
[6] |
Y. I. Prylutskyy, V. M. Yashchuk, K. M. Kushnir, A. A. Golub, V. A. Kudrenko, S. V. Prylutska, I. I. Grynyuk, E. V. Buzaneva, P. Scharff, T. Braun, and O. P. Matyshevska, Biophysical studies of fullerene-based composite for bio-nanotechnology, Mater. Sci. Eng. C23(1−2), 109 (2003)
CrossRef
ADS
Google scholar
|
[7] |
N. A. Kouklin, W. E. Kim, A. D. Lazareck, and J. M. Xu, Carbon nanotube probes for single-cell experimentation and assays, Appl. Phys. Lett.87(17), 173901 (2005)
CrossRef
ADS
Google scholar
|
[8] |
S. D. Caruthers, S. A. Wickline, and G. M. Lanza, Nanotechnological applications in medicine, Curr. Opin. Biotechnol.18(1), 26 (2007)
CrossRef
ADS
Google scholar
|
[9] |
L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther.83(5), 761 (2008)
CrossRef
ADS
Google scholar
|
[10] |
D. A. Groneberg, M. Giersig, T. Welte, and U. Pison, Nanoparticle-based diagnosis and therapy, Curr. Drug Targets7(6), 643 (2006)
CrossRef
ADS
Google scholar
|
[11] |
P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna, and M. R. Hamblin, Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism, Free Radic. Biol. Med.43(5), 711 (2007)
CrossRef
ADS
Google scholar
|
[12] |
J. Lin, H. Zhang, Z. Chen, and Y. Zheng, Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship, ACS Nano4(9), 5421 (2010)
CrossRef
ADS
Google scholar
|
[13] |
Y. Li, X. Chen, and N. Gu, Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/ hydrophilic effect, J. Phys. Chem. B112(51), 16647 (2008)
CrossRef
ADS
Google scholar
|
[14] |
J. Wong-Ekkabut, S. Baoukina, W. Triampo, I. M. Tang, D. P. Tieleman, and L. Monticelli, Computer simulation study of fullerene translocation through lipid membranes, Nat. Nanotechnol.3(6), 363 (2008)
CrossRef
ADS
Google scholar
|
[15] |
K. Yang and Y. Q. Ma, Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol.5(8), 579 (2010)
CrossRef
ADS
Google scholar
|
[16] |
K. Lai, B. Wang, Y. Zhang, and Y. Zheng, Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress, Phys. Chem. Chem. Phys.15(1), 270 (2013)
CrossRef
ADS
Google scholar
|
[17] |
X. Zhang, Y. Zhang, Y. Zheng, and B. Wang, Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration, Phys. Chem. Chem. Phys.15(7), 2473 (2013)
CrossRef
ADS
Google scholar
|
[18] |
J. Kolosnjaj, H. Szwarc, and F. Moussa, Bio-Applications of Nanoparticles, Springer, 2007, page 168
CrossRef
ADS
Google scholar
|
[19] |
C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, and K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol.3(7), 423 (2008)
CrossRef
ADS
Google scholar
|
[20] |
T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, and A. E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett.6(8), 1794 (2006)
CrossRef
ADS
Google scholar
|
[21] |
G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo, Cytotoxicity of carbon nanomaterials: Singlewall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol.39(5), 1378 (2005)
CrossRef
ADS
Google scholar
|
[22] |
H. Lee, Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids, J. Phys. Chem. B117(5), 1337 (2013)
CrossRef
ADS
Google scholar
|
[23] |
A. Z. Wang, R. Langer, and O. C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med.63(1), 185 (2012)
CrossRef
ADS
Google scholar
|
[24] |
A. Babu, A. K. Templeton, A. Munshi and R. Ramesh, Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges, Journal of Nanomaterials, 2013 (2013)
|
[25] |
D. Pozzi, C. Marchini, F. Cardarelli, A. Rossetta, V. Colapicchioni, A. Amici, M. Montani, S. Motta, P. Brocca, L. Cantù, and G. Caracciolo, Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems, Mol. Pharm.10(12), 4654 (2013)
CrossRef
ADS
Google scholar
|
[26] |
S. Tan, X. Li, Y. Guo, and Z. Zhang, Lipid-enveloped hybrid nanoparticles for drug delivery, Nanoscale5(3), 860 (2013)
CrossRef
ADS
Google scholar
|
[27] |
P. Majewski and B. Thierry, Functionalized magnetite nanoparticles- synthesis, properties, and bio-applications, Crit. Rev. Solid State Mater. Sci.32(3), 203 (2007)
CrossRef
ADS
Google scholar
|
[28] |
S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O’Brien, C. B. Murray, J. R. Kirtley, and G. A. Held, Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B109(26), 13030 (2005)
CrossRef
ADS
Google scholar
|
[29] |
S. Yu, and G. M. Chow, Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications, J. Mater. Chem.14(18), 2781 (2004)
CrossRef
ADS
Google scholar
|
[30] |
J. D. Peters, Cellular Transport of Functionalized Gold Nanoparticles, Ph. D. Thesis, Worcester: Worcester Polytechnic Institute, 2013
|
[31] |
Z. Chen, L. Ma, Y. Liu, and C. Chen, Applications of functionalized fullerenes in tumor theranostics., Theranostics2(3), 238 (2012)
CrossRef
ADS
Google scholar
|
[32] |
W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors, J. Phys. Chem. C114(4), 1822 (2010)
CrossRef
ADS
Google scholar
|
[33] |
J. Grebowski, A. Krokosz and M. Puchala, Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene, Biochimica et Biophysica Acta (BBA)-Biomembranes1828, 241 (2012)
CrossRef
ADS
Google scholar
|
[34] |
D. Baowan, B. J. Cox, and J. M. Hill, Instability of C60 fullerene interacting with lipid bilayer, J. Mol. Model.18(2), 549 (2012)
CrossRef
ADS
Google scholar
|
[35] |
S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B111(27), 7812 (2007)
CrossRef
ADS
Google scholar
|
[36] |
S. J. Marrink, A. H. de Vries, and A. E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B108(2), 750 (2004)
CrossRef
ADS
Google scholar
|
[37] |
H. Lee and H. Kim, Self-assembly of lipids and single-walled carbon nanotubes: Effects of lipid structure and PEGylation, J. Phys. Chem. C116(16), 9327 (2012)
CrossRef
ADS
Google scholar
|
[38] |
TubeGen 3.4, J. T. Frey and D. J. Doren, University of Delaware, Newark DE, 2011
|
[39] |
H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun.91(1−3), 43 (1995)
CrossRef
ADS
Google scholar
|
[40] |
E. Lindahl, B. Hess and D. Van Der Spoel, GROMACS 3.0: A package for molecular simulation and trajectory analysis Molecular modeling annual 7, 306 (2001)
|
[41] |
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys.81(8), 3684 (1984)
CrossRef
ADS
Google scholar
|
[42] |
R. Qiao, A. P. Roberts, A. S. Mount, S. J. Klaine, and P. C. Ke, Translocation of C60 and its derivatives across a lipid bilayer, Nano Lett.7(3), 614 (2007)
CrossRef
ADS
Google scholar
|
[43] |
X. Li, Y. Shi, B. Miao, and Y. Zhao, Effects of embedded carbon nanotube on properties of biomembrane, J. Phys. Chem. B116(18), 5391 (2012)
CrossRef
ADS
Google scholar
|
[44] |
R. Abedi Karjiban, N. S. Shaari, U. V. Gunasakaran and M. Basri, A Coarse-Grained Molecular Dynamics Study of DLPC, DMPC, DPPC, and DSPC Mixtures in Aqueous Solution, Journal of Chemistry, 2013 (2013)
|
/
〈 | 〉 |