Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers

Guan-Xing Guo, Lei Zhang, Yong Zhang

PDF(482 KB)
PDF(482 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 181-190. DOI: 10.1007/s11467-014-0440-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers

Author information +
History +

Abstract

Because of the many potential medical applications of nanoparticles, considerable research has been conducted on the interactions between nanoparticles and biomembranes. We employed coarsegrained molecular dynamics simulations to study the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes. Diffusion coefficients and scaling factors are adopted to quantify the diffusivity of the biomembranes, and the rupture tension is used to measure the lateral strength of the lipid bilayer. According to our simulations, all wrapped nanoparticles, except those wrapped by dipalmitoyl-glycero-phosphoglycerol, can be inserted into the bilayers. Our simulations also reveal that the bilayers remain in free diffusion after the nanoparticle insertions while their diffusion coefficient can be altered significantly. The polyhydroxylated single-walled nanotubes lead to significant changes to the lateral strength of biomembranes and this effect depends on the quantity of the inserted nanoparticles. The simulations demonstrate the feasibility of using these methods to deliver nanoparticles while some suggestions are given for choosing the appropriate lipids for wrapping. The results also suggest that the functionalized nanoparticles could be applied in strengthening or weakening the lateral strength of biomembranes for specific purposes.

Graphical abstract

Keywords

lipid bilayer / carbon nanoparticle / molecular dynamics

Cite this article

Download citation ▾
Guan-Xing Guo, Lei Zhang, Yong Zhang. Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers. Front. Phys., 2015, 10(2): 181‒190 https://doi.org/10.1007/s11467-014-0440-2

References

[1]
M. E. Samberg, S. J. Oldenburg, and N. A. Monteiro-Riviere, Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro, Environ. Health Perspect.118(3), 407 (2010)
CrossRef ADS Google scholar
[2]
B. J. Marquis, S. A. Love, K. L. Braun, and C. L. Haynes, Analytical methods to assess nanoparticle toxicity, Analyst134(3), 425 (2009)
CrossRef ADS Google scholar
[3]
X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, and J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in caenorhabditis elegans, Environ. Sci. Technol.46(2), 1119 (2012)
CrossRef ADS Google scholar
[4]
M. Schulz, A. Olubummo, and W. H. Binder, Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes, Soft Matter8(18), 4849 (2012)
CrossRef ADS Google scholar
[5]
A. A. Skandani, R. Zeineldin, and M. Al-Haik, Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes, Langmuir28(20), 7872 (2012)
CrossRef ADS Google scholar
[6]
Y. I. Prylutskyy, V. M. Yashchuk, K. M. Kushnir, A. A. Golub, V. A. Kudrenko, S. V. Prylutska, I. I. Grynyuk, E. V. Buzaneva, P. Scharff, T. Braun, and O. P. Matyshevska, Biophysical studies of fullerene-based composite for bio-nanotechnology, Mater. Sci. Eng. C23(1−2), 109 (2003)
CrossRef ADS Google scholar
[7]
N. A. Kouklin, W. E. Kim, A. D. Lazareck, and J. M. Xu, Carbon nanotube probes for single-cell experimentation and assays, Appl. Phys. Lett.87(17), 173901 (2005)
CrossRef ADS Google scholar
[8]
S. D. Caruthers, S. A. Wickline, and G. M. Lanza, Nanotechnological applications in medicine, Curr. Opin. Biotechnol.18(1), 26 (2007)
CrossRef ADS Google scholar
[9]
L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther.83(5), 761 (2008)
CrossRef ADS Google scholar
[10]
D. A. Groneberg, M. Giersig, T. Welte, and U. Pison, Nanoparticle-based diagnosis and therapy, Curr. Drug Targets7(6), 643 (2006)
CrossRef ADS Google scholar
[11]
P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna, and M. R. Hamblin, Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism, Free Radic. Biol. Med.43(5), 711 (2007)
CrossRef ADS Google scholar
[12]
J. Lin, H. Zhang, Z. Chen, and Y. Zheng, Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship, ACS Nano4(9), 5421 (2010)
CrossRef ADS Google scholar
[13]
Y. Li, X. Chen, and N. Gu, Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/ hydrophilic effect, J. Phys. Chem. B112(51), 16647 (2008)
CrossRef ADS Google scholar
[14]
J. Wong-Ekkabut, S. Baoukina, W. Triampo, I. M. Tang, D. P. Tieleman, and L. Monticelli, Computer simulation study of fullerene translocation through lipid membranes, Nat. Nanotechnol.3(6), 363 (2008)
CrossRef ADS Google scholar
[15]
K. Yang and Y. Q. Ma, Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol.5(8), 579 (2010)
CrossRef ADS Google scholar
[16]
K. Lai, B. Wang, Y. Zhang, and Y. Zheng, Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress, Phys. Chem. Chem. Phys.15(1), 270 (2013)
CrossRef ADS Google scholar
[17]
X. Zhang, Y. Zhang, Y. Zheng, and B. Wang, Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration, Phys. Chem. Chem. Phys.15(7), 2473 (2013)
CrossRef ADS Google scholar
[18]
J. Kolosnjaj, H. Szwarc, and F. Moussa, Bio-Applications of Nanoparticles, Springer, 2007, page 168
CrossRef ADS Google scholar
[19]
C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, and K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol.3(7), 423 (2008)
CrossRef ADS Google scholar
[20]
T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, and A. E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett.6(8), 1794 (2006)
CrossRef ADS Google scholar
[21]
G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo, Cytotoxicity of carbon nanomaterials: Singlewall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol.39(5), 1378 (2005)
CrossRef ADS Google scholar
[22]
H. Lee, Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids, J. Phys. Chem. B117(5), 1337 (2013)
CrossRef ADS Google scholar
[23]
A. Z. Wang, R. Langer, and O. C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med.63(1), 185 (2012)
CrossRef ADS Google scholar
[24]
A. Babu, A. K. Templeton, A. Munshi and R. Ramesh, Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges, Journal of Nanomaterials, 2013 (2013)
[25]
D. Pozzi, C. Marchini, F. Cardarelli, A. Rossetta, V. Colapicchioni, A. Amici, M. Montani, S. Motta, P. Brocca, L. Cantù, and G. Caracciolo, Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems, Mol. Pharm.10(12), 4654 (2013)
CrossRef ADS Google scholar
[26]
S. Tan, X. Li, Y. Guo, and Z. Zhang, Lipid-enveloped hybrid nanoparticles for drug delivery, Nanoscale5(3), 860 (2013)
CrossRef ADS Google scholar
[27]
P. Majewski and B. Thierry, Functionalized magnetite nanoparticles- synthesis, properties, and bio-applications, Crit. Rev. Solid State Mater. Sci.32(3), 203 (2007)
CrossRef ADS Google scholar
[28]
S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O’Brien, C. B. Murray, J. R. Kirtley, and G. A. Held, Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B109(26), 13030 (2005)
CrossRef ADS Google scholar
[29]
S. Yu, and G. M. Chow, Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications, J. Mater. Chem.14(18), 2781 (2004)
CrossRef ADS Google scholar
[30]
J. D. Peters, Cellular Transport of Functionalized Gold Nanoparticles, Ph. D. Thesis, Worcester: Worcester Polytechnic Institute, 2013
[31]
Z. Chen, L. Ma, Y. Liu, and C. Chen, Applications of functionalized fullerenes in tumor theranostics., Theranostics2(3), 238 (2012)
CrossRef ADS Google scholar
[32]
W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors, J. Phys. Chem. C114(4), 1822 (2010)
CrossRef ADS Google scholar
[33]
J. Grebowski, A. Krokosz and M. Puchala, Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene, Biochimica et Biophysica Acta (BBA)-Biomembranes1828, 241 (2012)
CrossRef ADS Google scholar
[34]
D. Baowan, B. J. Cox, and J. M. Hill, Instability of C60 fullerene interacting with lipid bilayer, J. Mol. Model.18(2), 549 (2012)
CrossRef ADS Google scholar
[35]
S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B111(27), 7812 (2007)
CrossRef ADS Google scholar
[36]
S. J. Marrink, A. H. de Vries, and A. E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B108(2), 750 (2004)
CrossRef ADS Google scholar
[37]
H. Lee and H. Kim, Self-assembly of lipids and single-walled carbon nanotubes: Effects of lipid structure and PEGylation, J. Phys. Chem. C116(16), 9327 (2012)
CrossRef ADS Google scholar
[38]
TubeGen 3.4, J. T. Frey and D. J. Doren, University of Delaware, Newark DE, 2011
[39]
H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun.91(1−3), 43 (1995)
CrossRef ADS Google scholar
[40]
E. Lindahl, B. Hess and D. Van Der Spoel, GROMACS 3.0: A package for molecular simulation and trajectory analysis Molecular modeling annual 7, 306 (2001)
[41]
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys.81(8), 3684 (1984)
CrossRef ADS Google scholar
[42]
R. Qiao, A. P. Roberts, A. S. Mount, S. J. Klaine, and P. C. Ke, Translocation of C60 and its derivatives across a lipid bilayer, Nano Lett.7(3), 614 (2007)
CrossRef ADS Google scholar
[43]
X. Li, Y. Shi, B. Miao, and Y. Zhao, Effects of embedded carbon nanotube on properties of biomembrane, J. Phys. Chem. B116(18), 5391 (2012)
CrossRef ADS Google scholar
[44]
R. Abedi Karjiban, N. S. Shaari, U. V. Gunasakaran and M. Basri, A Coarse-Grained Molecular Dynamics Study of DLPC, DMPC, DPPC, and DSPC Mixtures in Aqueous Solution, Journal of Chemistry, 2013 (2013)

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(482 KB)

Accesses

Citations

Detail

Sections
Recommended

/