Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity

Arash Ahmadivand , Saeed Golmohammadi

Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 104203

PDF (473KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 104203 DOI: 10.1007/s11467-014-0439-8
RESEARCH ARTICLE

Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity

Author information +
History +
PDF (473KB)

Abstract

In this study, gold nanodisk clusters in heptamer orientations as clusters were used to design a super-heptamer consisting of one central and six peripheral heptamers. We examined the position and movement of the plasmon and Fano resonances by sketching the spectral response of the superstructure for various nanodisk dimensions. The quality of the interference between the superradiant and subradiant plasmon resonance modes of the nanodisk clusters was found to depend strongly on the structural configuration and the refractive index of the environmental medium. We replaced the central heptamer with a nanodisk and probed the position of the Fano resonance by geometrically altering the nanodisk structure. Finally, the effect of the dielectric environment on the plasmon response of both of the studied structures was examined numerically and theoretically. The localized surface plasmon resonance sensitivity of the finite plasmonic structures to the presence of liquid substances was investigated and shown by plotting the linear figure of merit. The finite-difference time-domain method was used as a numerical tool to investigate the plasmon response of the structure.

Graphical abstract

Keywords

gold nanodisk / spectral response / Fano resonance / localized surface plasmon resonance (LSPR) / figure of merit (FoM)

Cite this article

Download citation ▾
Arash Ahmadivand, Saeed Golmohammadi. Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity. Front. Phys., 2015, 10(2): 104203 DOI:10.1007/s11467-014-0439-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Berlin: Springer-Verlag, 1988

[2]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer-Verlag, 1995

[3]

B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics, New York: Wiley, 1991

[4]

S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007

[5]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature424(6950), 824 (2003)

[6]

D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics4(2), 83 (2010)

[7]

J. J. Mock, D. R. Smith, and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Lett.3(4), 485 (2003)

[8]

S. Linic, P. Christopher, and D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater.10(12), 911 (2011)

[9]

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, Transformation optics and subwavelength control of light, Science337(6094), 549 (2012)

[10]

J. Zhu, J. J. Li, L. Yuan, and J. W. Zhao, Optimization of three-layered Au−Ag bimetallic nanoshells for triple-bands surface plasmon resonance, J. Phys. Chem. C116(21), 11734 (2012)

[11]

C. Y. Tsai, J. W. Lin, C. Y. Wu, P. T. Lin, T. W. Lu, and P. T. Lee, Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode, Nano Lett.12(3), 1648 (2012)

[12]

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Close encounters between two nanoshells, Nano Lett.8(4), 1212 (2008)

[13]

L. Cheng, J. Song, J. Yin, and H. Duan, Self-assembled plasmonic dimers of amphiphilic gold nanocrystals, J. Phys. Chem. Lett.2(17), 2258 (2011)

[14]

S. S. Aćmović, M. P. Kreuzer, M. U. González, and R. Quidant, Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing, ACS Nano3(5), 1231 (2009)

[15]

D. W. Brandl, N. A. Mirin, and P. Nordlander, Plasmon modes of nanosphere trimers and quadrumers, J. Phys. Chem. B110(25), 12302 (2006)

[16]

P. K. Jain and M. A. El-Sayed, Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers, J. Phys. Chem. C112(13), 4954 (2008)

[17]

L. Chuntonov and G. Haran, Trimeric plasmonic molecules: The role of symmetry, Nano Lett.11(6), 2440 (2011)

[18]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Schvets, P. Nordlander, and F. Capasso, Fano-like interference in self-assembled plasmonic quadrumer clusters, Nano Lett.10(11), 4680 (2010)

[19]

J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, Plasmonic mode engineering with templated self-assembled nanoclusters, Nano Lett.12(10), 5318 (2012)

[20]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, Self-assembled plasmonic nanoparticle clusters, Science328(5982), 1135 (2010)

[21]

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, Manipulating magnetic plasmon propagation in metallic nanocluster networks, ACS Nano6(6): 5482 (2012)

[22]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater.9(9), 707 (2010)

[23]

Z. Fan, H. Zhang, and A. O. Govorov, Optical properties of chiral plasmonic tetramers: Circular dichroism and multipole effects, J. Phys. Chem. C117(28), 14770 (2013)

[24]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers, Phys. Rev. A88(5), 053819 (2013)

[25]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science302(5644), 419 (2003)

[26]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Lett.4(5), 899 (2004)

[27]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B76(7), 073101 (2007)

[28]

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, Excitation of dark plasmons in metal nanoparticles by a localized emitter, Phys. Rev. Lett.102(10), 107401 (2009)

[29]

Z. Nie, A. Petukhova, and E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol.5, 15 (2010)

[30]

E. Prodan and P. Nordlander, Plasmon hybridization in spherical nanoparticles, J. Chem. Phys.120(11), 5444 (2004)

[31]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities, ACS Nano4(3), 1664 (2010)

[32]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures, Nanotechnology20(46), 465203 (2009)

[33]

C. M. Sweeney, C. L. Stender, C. L. Nehl, W. Hasan, K. L. Shuford, and T. W. Odom, Optical properties of tipless gold nanopyramids, Small7(14), 2032 (2011)

[34]

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, and P. Nordlander, Magnetictplasmonic coretshell nanoparticles, ACS Nano3, 1379 (2009)

[35]

T. Ambjornsson, G. Mukhopadhyay, S. P. Apell, and M. Kall, Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles, Phys. Rev. B73, 085412 (2006)

[36]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. A. Link, A plasmonic fano switch, Nano Lett.12(9), 4977 (2012)

[37]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, Fano-like interference of plasmon resonances at a single rod-shaped nanoantennas, New J. Phys.14, 023035 (2012)

[38]

J. Zhao, J. Z. Yang, P. P. Zhu, C. Sun, and J. Xu, A comparative study of the effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating with different width of aperture, Adv. Mater. Res.503−504, 247 (2012)

[39]

Z. Chen, R. Hu, L. Cui, L. Yu, L. Wang, and J. Xiao, Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems, Opt. Commun.320, 6 (2014)

[40]

E. D. Palik, Handbook of Optical Constant of Solids, London: Academic Press, 1991

[41]

E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids, London: Academic Press, 1999

[42]

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, New Jersey: Wiley & Sons, 2013

[43]

U. S. Inan and R. A. Marshall, Numerical Electromagnetic: The FDTD Method, New York: Cambridge University Press, 2011

[44]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability, Nano Lett.10(8), 3184 (2010)

[45]

Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer, Sensors10(4), 3585 (2010)

[46]

Y. Q. Chen and C. J. Lu, Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors, Sens. Actuators B135(2), 492 (2009)

[47]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS, Nano Lett.12(3), 1660 (2012)

[48]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors, Nano Lett.7(5), 1256 (2007)

[49]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes, Nano Lett.5(10), 2034 (2005)

[50]

F. Hao, Y. Sonnefraud, P. V. Drope, S. A. Maier, N. J. Halas, and P. Nordlander, Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable fano resonance, Nano Lett.8(11), 3983 (2008)

[51]

N. Liu, T. Wiess, M. Mesch, L. Langguth, U. Eignthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett.10(4), 1103 (2010)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (473KB)

1029

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/