Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity
Arash Ahmadivand, Saeed Golmohammadi
Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity
In this study, gold nanodisk clusters in heptamer orientations as clusters were used to design a super-heptamer consisting of one central and six peripheral heptamers. We examined the position and movement of the plasmon and Fano resonances by sketching the spectral response of the superstructure for various nanodisk dimensions. The quality of the interference between the superradiant and subradiant plasmon resonance modes of the nanodisk clusters was found to depend strongly on the structural configuration and the refractive index of the environmental medium. We replaced the central heptamer with a nanodisk and probed the position of the Fano resonance by geometrically altering the nanodisk structure. Finally, the effect of the dielectric environment on the plasmon response of both of the studied structures was examined numerically and theoretically. The localized surface plasmon resonance sensitivity of the finite plasmonic structures to the presence of liquid substances was investigated and shown by plotting the linear figure of merit. The finite-difference time-domain method was used as a numerical tool to investigate the plasmon response of the structure.
gold nanodisk / spectral response / Fano resonance / localized surface plasmon resonance (LSPR) / figure of merit (FoM)
[1] |
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Berlin: Springer-Verlag, 1988
|
[2] |
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer-Verlag, 1995
CrossRef
ADS
Google scholar
|
[3] |
B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics, New York: Wiley, 1991
CrossRef
ADS
Google scholar
|
[4] |
S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
|
[5] |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature424(6950), 824 (2003)
CrossRef
ADS
Google scholar
|
[6] |
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics4(2), 83 (2010)
CrossRef
ADS
Google scholar
|
[7] |
J. J. Mock, D. R. Smith, and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Lett.3(4), 485 (2003)
CrossRef
ADS
Google scholar
|
[8] |
S. Linic, P. Christopher, and D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater.10(12), 911 (2011)
CrossRef
ADS
Google scholar
|
[9] |
J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, Transformation optics and subwavelength control of light, Science337(6094), 549 (2012)
CrossRef
ADS
Google scholar
|
[10] |
J. Zhu, J. J. Li, L. Yuan, and J. W. Zhao, Optimization of three-layered Au-Ag bimetallic nanoshells for triple-bands surface plasmon resonance, J. Phys. Chem. C116(21), 11734 (2012)
CrossRef
ADS
Google scholar
|
[11] |
C. Y. Tsai, J. W. Lin, C. Y. Wu, P. T. Lin, T. W. Lu, and P. T. Lee, Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode, Nano Lett.12(3), 1648 (2012)
CrossRef
ADS
Google scholar
|
[12] |
B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Close encounters between two nanoshells, Nano Lett.8(4), 1212 (2008)
CrossRef
ADS
Google scholar
|
[13] |
L. Cheng, J. Song, J. Yin, and H. Duan, Self-assembled plasmonic dimers of amphiphilic gold nanocrystals, J. Phys. Chem. Lett.2(17), 2258 (2011)
CrossRef
ADS
Google scholar
|
[14] |
S. S. Aćmović, M. P. Kreuzer, M. U. González, and R. Quidant, Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing, ACS Nano3(5), 1231 (2009)
CrossRef
ADS
Google scholar
|
[15] |
D. W. Brandl, N. A. Mirin, and P. Nordlander, Plasmon modes of nanosphere trimers and quadrumers, J. Phys. Chem. B110(25), 12302 (2006)
CrossRef
ADS
Google scholar
|
[16] |
P. K. Jain and M. A. El-Sayed, Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers, J. Phys. Chem. C112(13), 4954 (2008)
CrossRef
ADS
Google scholar
|
[17] |
L. Chuntonov and G. Haran, Trimeric plasmonic molecules: The role of symmetry, Nano Lett.11(6), 2440 (2011)
CrossRef
ADS
Google scholar
|
[18] |
J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Schvets, P. Nordlander, and F. Capasso, Fano-like interference in self-assembled plasmonic quadrumer clusters, Nano Lett.10(11), 4680 (2010)
CrossRef
ADS
Google scholar
|
[19] |
J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, Plasmonic mode engineering with templated self-assembled nanoclusters, Nano Lett.12(10), 5318 (2012)
CrossRef
ADS
Google scholar
|
[20] |
J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, Self-assembled plasmonic nanoparticle clusters, Science328(5982), 1135 (2010)
CrossRef
ADS
Google scholar
|
[21] |
N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, Manipulating magnetic plasmon propagation in metallic nanocluster networks, ACS Nano6(6): 5482 (2012)
CrossRef
ADS
Google scholar
|
[22] |
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater.9(9), 707 (2010)
CrossRef
ADS
Google scholar
|
[23] |
Z. Fan, H. Zhang, and A. O. Govorov, Optical properties of chiral plasmonic tetramers: Circular dichroism and multipole effects, J. Phys. Chem. C117(28), 14770 (2013)
CrossRef
ADS
Google scholar
|
[24] |
B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers, Phys. Rev. A88(5), 053819 (2013)
CrossRef
ADS
Google scholar
|
[25] |
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science302(5644), 419 (2003)
CrossRef
ADS
Google scholar
|
[26] |
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Lett.4(5), 899 (2004)
CrossRef
ADS
Google scholar
|
[27] |
H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B76(7), 073101 (2007)
CrossRef
ADS
Google scholar
|
[28] |
M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, Excitation of dark plasmons in metal nanoparticles by a localized emitter, Phys. Rev. Lett.102(10), 107401 (2009)
CrossRef
ADS
Google scholar
|
[29] |
Z. Nie, A. Petukhova, and E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol.5, 15 (2010)
CrossRef
ADS
Google scholar
|
[30] |
E. Prodan and P. Nordlander, Plasmon hybridization in spherical nanoparticles, J. Chem. Phys.120(11), 5444 (2004)
CrossRef
ADS
Google scholar
|
[31] |
Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities, ACS Nano4(3), 1664 (2010)
CrossRef
ADS
Google scholar
|
[32] |
J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures, Nanotechnology20(46), 465203 (2009)
CrossRef
ADS
Google scholar
|
[33] |
C. M. Sweeney, C. L. Stender, C. L. Nehl, W. Hasan, K. L. Shuford, and T. W. Odom, Optical properties of tipless gold nanopyramids, Small7(14), 2032 (2011)
CrossRef
ADS
Google scholar
|
[34] |
C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, and P. Nordlander, Magnetictplasmonic coretshell nanoparticles, ACS Nano3, 1379 (2009)
CrossRef
ADS
Google scholar
|
[35] |
T. Ambjornsson, G. Mukhopadhyay, S. P. Apell, and M. Kall, Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles, Phys. Rev. B73, 085412 (2006)
CrossRef
ADS
Google scholar
|
[36] |
W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. A. Link, A plasmonic fano switch, Nano Lett.12(9), 4977 (2012)
CrossRef
ADS
Google scholar
|
[37] |
F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, Fano-like interference of plasmon resonances at a single rod-shaped nanoantennas, New J. Phys.14, 023035 (2012)
CrossRef
ADS
Google scholar
|
[38] |
J. Zhao, J. Z. Yang, P. P. Zhu, C. Sun, and J. Xu, A comparative study of the effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating with different width of aperture, Adv. Mater. Res.503-504, 247 (2012)
CrossRef
ADS
Google scholar
|
[39] |
Z. Chen, R. Hu, L. Cui, L. Yu, L. Wang, and J. Xiao, Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems, Opt. Commun.320, 6 (2014)
CrossRef
ADS
Google scholar
|
[40] |
E. D. Palik, Handbook of Optical Constant of Solids, London: Academic Press, 1991
|
[41] |
E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids, London: Academic Press, 1999
|
[42] |
D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, New Jersey: Wiley & Sons, 2013
CrossRef
ADS
Google scholar
|
[43] |
U. S. Inan and R. A. Marshall, Numerical Electromagnetic: The FDTD Method, New York: Cambridge University Press, 2011
CrossRef
ADS
Google scholar
|
[44] |
J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability, Nano Lett.10(8), 3184 (2010)
CrossRef
ADS
Google scholar
|
[45] |
Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer, Sensors10(4), 3585 (2010)
CrossRef
ADS
Google scholar
|
[46] |
Y. Q. Chen and C. J. Lu, Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors, Sens. Actuators B135(2), 492 (2009)
CrossRef
ADS
Google scholar
|
[47] |
J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS, Nano Lett.12(3), 1660 (2012)
CrossRef
ADS
Google scholar
|
[48] |
E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors, Nano Lett.7(5), 1256 (2007)
CrossRef
ADS
Google scholar
|
[49] |
L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes, Nano Lett.5(10), 2034 (2005)
CrossRef
ADS
Google scholar
|
[50] |
F. Hao, Y. Sonnefraud, P. V. Drope, S. A. Maier, N. J. Halas, and P. Nordlander, Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable fano resonance, Nano Lett.8(11), 3983 (2008)
CrossRef
ADS
Google scholar
|
[51] |
N. Liu, T. Wiess, M. Mesch, L. Langguth, U. Eignthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett.10(4), 1103 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |