Generation of adjustable pure spin currents in negative-U systems
Rui-Qiang Wang, Li Sheng, Liang-Bin Hu, Mou Yang, Baigeng Wang, D. Y. Xing
Generation of adjustable pure spin currents in negative-U systems
Single-particle sequential tunneling is studied through a negative-Ucenter hybridized with a superconducting, a ferromagnetic, and a normal metal electrodes. In stark contrast to the case of positive U, the single-particle tunneling in attractive charging energy is usually prohibited by ground states with electrons in pairs. We find a microscopic mechanism to induce single-particle sates from pair states. As a consequence, in the nonpolarized metal terminal a remarkable pure spin current with no charge currents survives over a wide range of gate- and bias- voltages, which is rather crucial for experimental observation and design of spintronic devices. In addition, a significant spin-filter effect is presented in certain bias regime.
spin current / negative U / proximity effect
[1] |
I. Žutić, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys., 2004, 76(2): 323
CrossRef
ADS
Google scholar
|
[2] |
Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the spin Hall effect in semiconductors, Science, 2004, 306(5703): 5703
CrossRef
ADS
Google scholar
|
[3] |
F. J. Jedema, A. T. Filip, and B. J. van Wees, Electrical spin injection and accumulation at room temperature in an allmetal mesoscopic spin valve, Nature, 2001, 410(6826): 345
CrossRef
ADS
Google scholar
|
[4] |
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature, 2008, 455(7214): 778
CrossRef
ADS
Google scholar
|
[5] |
A. R. Rocha, V. M. Garciá-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Towards molecular spintronics, Nat. Mater., 2005, 4(4): 335
CrossRef
ADS
Google scholar
|
[6] |
L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nat. Mater., 2008, 7(3): 179
CrossRef
ADS
Google scholar
|
[7] |
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Spintronics of a nanoelectromechanical shuttle, Phys. Rev. Lett., 2005, 95(5): 057203
CrossRef
ADS
Google scholar
|
[8] |
R. Q. Wang, B. G. Wang, and D. Y. Xing, Spin valve effect in a magnetic nanoelectromechanical shuttle, Phys. Rev. Lett., 2008, 100(11): 117206
CrossRef
ADS
Google scholar
|
[9] |
B. K. Kim, Y. H. Ahn, J. J. Kim, M. S. Choi, M. H. Bae, K. Kang, J. S. Lim, R. Lopez, and N. Kim, Transport measurement of Andreev bound states in a Kondo-correlated quantum dot, Phys. Rev. Lett., 2013, 110(7): 076803
CrossRef
ADS
Google scholar
|
[10] |
A. Martín-Rodero and A. L. Yeyati, Josephson and Andreev transport through quantum dots, Adv. Phys., 2011, 60(6): 899
CrossRef
ADS
Google scholar
|
[11] |
A. Oguri, Y. Tanaka, and J. Bauer, Interplay between Kondo and Andreev–Josephson effects in a quantum dot coupled to one normal and two superconducting leads, Phys. Rev. B, 2013, 87(7): 075432
CrossRef
ADS
Google scholar
|
[12] |
W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygard, and C. M. Marcus, Tunneling spectroscopy of quasiparticle bound states in a spinful josephson junction, Phys. Rev. Lett., 2013, 110(21): 217005
CrossRef
ADS
Google scholar
|
[13] |
C. Richard, M. Houzet, and J. S. Meyer, Andreev current induced by ferromagnetic resonance, Phys. Rev. Lett., 2012, 109(5): 057002
CrossRef
ADS
Google scholar
|
[14] |
B. Sothmann, D. Futterer, M. Governale, and J. König, Probing the exchange field of a quantum-dot spin valve by a superconducting lead, Phys. Rev. B, 2010, 82(9): 094514
CrossRef
ADS
Google scholar
|
[15] |
D. Futterer, M. Governale, M. G. Pala, and J. König, Nonlocal Andreev transport through an interacting quantum dot, Phys. Rev. B, 2009, 79(5): 054505
CrossRef
ADS
Google scholar
|
[16] |
D. Futterer, M. Governale, and J. König, Generation of pure spin currents by superconducting proximity effect in quantum dots, Europhys. Lett., 2010, 91(4): 47004
CrossRef
ADS
Google scholar
|
[17] |
J. Koch, M. E. Raikh, and F. von Oppen, Pair tunneling through single molecules, Phys. Rev. Lett., 2006, 96(5): 056803
CrossRef
ADS
Google scholar
|
[18] |
J. Koch and F. von Oppen, Franck-Condon blockade and giant Fano factors in transport through single molecules, Phys. Rev. Lett., 2005, 94(20): 206804
CrossRef
ADS
Google scholar
|
[19] |
K. I. Wysokiński, Thermal transport of molecular junctions in the pair tunneling regime, Phys. Rev. B, 2010, 82(11): 115423
CrossRef
ADS
Google scholar
|
[20] |
N. T. Son, X. T. Trinh, L. S. Lovlie, B. G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, and E. Janzen, Negative-U system of carbon vacancy in 4H-SiC, Phys. Rev. Lett., 2012, 109(18): 187603
CrossRef
ADS
Google scholar
|
[21] |
T. A. Costi and V. Zlatic, Charge Kondo anomalies in PbTe doped with Tl impurities, Phys. Rev. Lett., 2012, 108(3): 036402
CrossRef
ADS
Google scholar
|
[22] |
C. Kraiya and D. H. Evans, Investigation of potential inversion in the reduction of 9,10-dinitroanthracene and 3,6- dinitrodurene, J. Electroanal. Chem., 2004, 565(1): 29
CrossRef
ADS
Google scholar
|
[23] |
P. W. Anderson, Model for the electronic structure of amorphous semiconductors, Phys. Rev. Lett., 1975, 34(15): 953
CrossRef
ADS
Google scholar
|
[24] |
J. Koch, E. Sela, Y. Oreg, and F. von Oppen, Nonequilibrium charge-Kondo transport through negative-U molecules, Phys. Rev. B, 2007, 75(19): 195402
CrossRef
ADS
Google scholar
|
[25] |
P. S. Cornaglia, H. Ness, and D. R. Grempel, Many-body effects on the transport properties of single-molecule devices, Phys. Rev. Lett., 2004, 93(14): 147201
CrossRef
ADS
Google scholar
|
[26] |
P. Recher, Y. V. Nazarov, and L. P. Kouwenhoven, Josephson light-emitting diode, Phys. Rev. Lett., 2010, 104(15): 156802
CrossRef
ADS
Google scholar
|
[27] |
T. Meng, S. Florens, and P. Simon, Self-consistent description of Andreev bound states in Josephson quantum dot devices, Phys. Rev. B, 2009, 79(22): 224521
CrossRef
ADS
Google scholar
|
[28] |
C. Timm, Tunneling through molecules and quantum dots: Master-equation approaches, Phys. Rev. B, 2008, 77(19): 195416
CrossRef
ADS
Google scholar
|
[29] |
Z. Chen, B. G. Wang, D. Y. Xing, and J. Wang, A spin injector, Appl. Phys. Lett., 2004, 85(13): 2553
CrossRef
ADS
Google scholar
|
[30] |
F. M. Souza, J. C. Egues, and A. P. Jauho, Quantum dot as a spin-current diode: A master-equation approach, Phys. Rev. B, 2007, 75(16): 165303
CrossRef
ADS
Google scholar
|
[31] |
S. De Franceschi, L. Kouwenhoven, C. Schönenberger, and W. Wernsdorfer, Hybrid superconductor–quantum dot devices, Nat. Nanotechnol., 2010, 5(10): 703
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |