Entanglement concentration for a non-maximally entangled four-photon cluster state

Xiang Yan, Ya-Fei Yu, Zhi-Ming Zhang

PDF(212 KB)
PDF(212 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 640-645. DOI: 10.1007/s11467-014-0435-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Entanglement concentration for a non-maximally entangled four-photon cluster state

Author information +
History +

Abstract

We present a scheme for locally concentrating a non-maximally entangled four-photon cluster state into a maximally-entangled four-photon cluster state. This scheme has a high success probability. The controlled-NOT (CNOT) gate is a crucial ingredient in this scheme, and we use a nearly deterministic CNOT gate, which is similar with that first introduced by Nemoto et al. (Phys. Rev. Lett., 2004, 93: 250502). This CNOT gate has a simple structure and does not need the strong nonlinearity.

Graphical abstract

Keywords

cluster state / entanglement concentration / controlled-NOT gate

Cite this article

Download citation ▾
Xiang Yan, Ya-Fei Yu, Zhi-Ming Zhang. Entanglement concentration for a non-maximally entangled four-photon cluster state. Front. Phys., 2014, 9(5): 640‒645 https://doi.org/10.1007/s11467-014-0435-z

References

[1]
H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A, 2002, 65(4): 042305
CrossRef ADS Google scholar
[2]
T. C. Ralph, A. Gilchrist, G. J. Milburn, W. Munro, and S. Glancy, Quantum computation with optical coherent states, Phys. Rev. A, 2003, 68(4): 042319
CrossRef ADS Google scholar
[3]
S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A, 2001, 64(2): 022313
CrossRef ADS Google scholar
[4]
H. Jeong, M. S. Kim, and J. Lee, Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel, Phys. Rev. A, 2001, 64(5): 052308
CrossRef ADS Google scholar
[5]
D. Gottesman and J. Preskill, Secure quantum key distribution using squeezed states, Phys. Rev. A, 2001, 63(2): 022309
CrossRef ADS Google scholar
[6]
N. J. Cerf, M. Lévy, and G. Assche, Quantum distribution of Gaussian keys using squeezed states, Phys. Rev. A, 2001, 63(5): 052311
CrossRef ADS Google scholar
[7]
W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 2000, 62(6): 062314
CrossRef ADS Google scholar
[8]
C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 1996, 76(5): 722
CrossRef ADS Google scholar
[9]
Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A, 2001, 64(1): 014301
CrossRef ADS Google scholar
[10]
L. Ye and G. C. Guo, Scheme for entanglement concentration of atomic entangled states in cavity QED, Phys. Lett. A, 2004, 327(4): 284
CrossRef ADS Google scholar
[11]
C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 1996, 76(5): 722
CrossRef ADS Google scholar
[12]
M. Yang and Z. L. Cao, Entanglement distillation for W class states, Physica A, 2004, 337(1-2): 141
CrossRef ADS Google scholar
[13]
M. Yang, W. Song, and Z. L. Cao, Entanglement distillation for atomic states via cavity QED, Physica A, 2004, 341: 251
CrossRef ADS Google scholar
[14]
J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature, 2001, 410(6832): 1067
CrossRef ADS Google scholar
[15]
H. F.Wang, S. Zhang, and K. H. Yeon, Linear optical scheme for entanglement concentration of two partially entangled three-photon W states, Eur. Phys. J. D, 2010, 56(2): 271
CrossRef ADS Google scholar
[16]
L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity, J. Opt. Soc. Am. B, 2012, 29(4): 630
CrossRef ADS Google scholar
[17]
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A, 2012, 85(4): 042302
CrossRef ADS Google scholar
[18]
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, 53(4): 2046
CrossRef ADS Google scholar
[19]
Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A, 2001, 64(1): 014301
CrossRef ADS Google scholar
[20]
Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A, 2008, 77(6): 062325
CrossRef ADS Google scholar
[21]
Z. L. Cao and M. Yang, Entanglement distillation for threeparticle W class states, J. Phys. B, 2003, 36(21): 4245
CrossRef ADS Google scholar
[22]
L. H. Zhang, M. Yang, and Z. L. Cao, Entanglement concentration for unknown Wclass states, Physica A, 2007, 374(2): 611
CrossRef ADS Google scholar
[23]
H. F. Wang, S. Zhang, and K. H. Yeon, Linear optical scheme for entanglement concentration of two partially entangled three-photon W states, Eur. Phys. J. D, 2010, 56(2): 271
CrossRef ADS Google scholar
[24]
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A, 2012, 85(4): 042302
CrossRef ADS Google scholar
[25]
W. Dür and H. J. Briegel, Stability of macroscopic entanglement under decoherence, Phys. Rev. Lett., 2004, 92(18): 180403
CrossRef ADS Google scholar
[26]
B. Si, S. L. Su, L. L. Sun, L. Y. Cheng, H. F. Wang, and S. Zhang, Efficient three-step entanglement concentration for an arbitrary four-photon cluster state, Chin. Phys. B, 2013, 22(3): 030305
CrossRef ADS Google scholar
[27]
S. Y. Zhao, J. Liu, L. Zhou, and Y. B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inf. Process., 2013, 12(12): 3633
CrossRef ADS Google scholar
[28]
B. S. Choudhury and A. Dhara, An entanglement concentration protocol for cluster states, Quantum Inf. Process., 2013, 12(7): 2577
CrossRef ADS Google scholar
[29]
Q. Lin and J. Li, Quantum control gates with weak cross-Kerr nonlinearity, Phys. Rev. A, 2009, 79(2): 022301
CrossRef ADS Google scholar
[30]
K. Nemoto and W. J. Munro, Nearly deterministic linear optical controlled-NOT<?Pub Caret?> gate, Phys. Rev. Lett., 2004, 93(25): 250502
CrossRef ADS Google scholar
[31]
P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys., 2007, 79(1): 135
CrossRef ADS Google scholar
[32]
B. Yurke, Wideband photon counting and homodyne detection, Phys. Rev. A, 1985, 32(1): 311
CrossRef ADS Google scholar
[33]
J. H. Shapiro, Single-photon Kerr nonlinearities do not help quantum computation, Phys. Rev. A, 2006, 73: 062305
CrossRef ADS Google scholar
[34]
J. H. Shapiro and M. Razavi, Continuous-time cross-phase modulation and quantum computation, New. J. Phys., 2007, 9: 16
CrossRef ADS Google scholar
[35]
W. J. Munro, Kae Nemoto, T. P. Spiller, S. D. Barrett, Pieter Kok, and R. G. Beausoleil, Efficient optical quantum information processing, J. Opt. B, 2005, 7(7): S135
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(212 KB)

Accesses

Citations

Detail

Sections
Recommended

/