Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image

Zhi-Bo Ni , Xing-Long Chen , Hong-Bo Fu , Jing-Ge Wang , Feng-Zhong Dong

Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 439 -445.

PDF (524KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 439 -445. DOI: 10.1007/s11467-014-0433-1
RESEARCH ARTICLE

Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image

Author information +
History +
PDF (524KB)

Abstract

To reduce the influence of laser-induced breakdown spectroscopy (LIBS) experimental parameter fluctuations to quantitative analysis of slag components, a normalization method using integral intensity of plasma image was proposed and a series of experiments with slag samples were performed. Mg II 279.55 nm, Ca II 396.85 and Ca I 422.67 nm were selected as analytical lines, and analytical curves of reference mass fractions versus spectral line intensities were established. With the increment of set threshold for edge extraction of plasma image, the determination coefficients and relative standard deviations of analytical curves were improved gradually and reached the optimum values when the threshold was equal to 10 000. Comparing with the results without normalization and normalized by whole spectrum area, the relativity between spectral line intensity and mass fraction can be enhanced efficiently after normalized by integral intensity of plasma image. The verification experiments with Ti alloy samples further confirmed the conclusions mentioned above.

Graphical abstract

Keywords

laser-induced breakdown spectroscopy / analytical curve / plasma image / normalization

Cite this article

Download citation ▾
Zhi-Bo Ni, Xing-Long Chen, Hong-Bo Fu, Jing-Ge Wang, Feng-Zhong Dong. Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image. Front. Phys., 2014, 9(4): 439-445 DOI:10.1007/s11467-014-0433-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

The Ministry of Human Resources and Social Security Office, Metallurgical Principle, Beijing: China Labour and Social Security Publishing House, 2011

[2]

M. Kraushaar, R. Noll, and H. U. Schmitz, Slag Analysis with Laser-Induced Breakdown Spectrometry, Appl. Spectrosc., 2003, 57(10): 1282

[3]

R. Noll, Laser-Induced Breakdown Spectroscopy-Fundamentals and Applications, Springer, 2012

[4]

C. L. Moreno, S. Palanco, and J. J. Laserna, Quantitative analysis of samples at high temperature with remote laserinduced breakdown spectrometry using a room-temperature calibration plot, Spectrochim. Acta B At. Spectrosc., 2005, 60(7-8): 1034

[5]

Z. Wang, T.B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys., 2014

[6]

F. Z. Dong, X. D. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys., 2012, 7(6): 679

[7]

S. C. Yao, J. D. Lu, C. L. Xie, P. Li, S. H. Pan, J. Li, and Y. Liu, Quantitative analysis of laser induced carbon plasma by intensity ratio calibration, High Power Laser and Particle Beams, 2008, 20(7): 1089 (in Chinese)

[8]

B. C. Windom and D. W. Hahn, Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response, J. Anal. At. Spectrom., 2009, 24(12): 1665

[9]

L. C. Nunes, J. W. Batista Braga, L. C. Trevizan, P. Florencio de Souza, G. G. Arantes de Carvalho, D. S. Junior, R. J. Poppi, and F. J. Krug, Optimization and validation of a LIBS method for the determination of macro and micronutrients in sugar cane leaves, J. Anal. At. Spectrom., 2010, 25(9): 1453

[10]

J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laserinduced breakdown spectroscopy, Anal. Bioanal. Chem., 2011, 400(10): 3261

[11]

Z. Wang, J. Feng, L. Li, W. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom., 2011, 26(11): 2289

[12]

B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere, Spectrochim. Acta B At. Spectrosc., 2006, 61(3): 301

[13]

F. Bredice, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Real time measurement of the electron density of a laser generated plasma using a RC circuit, Spectrochim. Acta B At. Spectrosc., 2007, 62(8): 836

[14]

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach, Spectrochim. Acta B At. Spectrosc., 2005, 60(7-8): 1186

[15]

F. J. Fortes, M. Cortes, M. D. Simon, L. M. Cabalin, and J. J. Laserna, Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry, Anal. Chim. Acta, 2005, 554(1-2): 136

[16]

J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: Correlation analysis with plasma-induced current versus continuum background, J. Anal. At. Spectrom., 2005, 20(1): 53

[17]

V. Sturm, H. U. Schmitz, T. Reuter, T. Reuter, R. Fleige, and R. Noll, Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 2008, 63(10): 1167

[18]

Z. Wang, L. Li, L. West, Z. Li, and W. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B At. Spectrosc., 2012, 68: 58

[19]

J. Yu, Q. L. Ma, V. Motto-Ros, W. Q. Lei, X. C. Wang, and X. S.Bai, Generation and expansion of laser-induced plasma as a spectroscopic emission source, Front. Phys., 2012, 7(6): 649

[20]

W. Lei, Temporal and spatial characteristics of laser-induced plasma on organic materials and quantitative analysis of the contained inorganic elements, East China Normal University, Shanghai, 2012

[21]

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, Time-resolved characterization of laser-induced plasma from fresh potatoes, Spectrochim. Acta B At. Spectrosc., 2009, 64(9): 891

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (524KB)

1422

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/