Partially entangled states bridge in quantum teleportation

Xiao-Fei Cai, Xu-Tao Yu, Li-Hui Shi, Zai-Chen Zhang

PDF(182 KB)
PDF(182 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 646-651. DOI: 10.1007/s11467-014-0432-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Partially entangled states bridge in quantum teleportation

Author information +
History +

Abstract

The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

Graphical abstract

Keywords

partially entangled states / quantum bridge / quantum teleportation / quantum logic gate

Cite this article

Download citation ▾
Xiao-Fei Cai, Xu-Tao Yu, Li-Hui Shi, Zai-Chen Zhang. Partially entangled states bridge in quantum teleportation. Front. Phys., 2014, 9(5): 646‒651 https://doi.org/10.1007/s11467-014-0432-2

References

[1]
A. G. White, D. F. V. James, W. J. Munro, and P. G. Kwiat, Measuring entanglement and entanglement measures, Technical Digest, 2000.
[2]
S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE Journal on Selected Areas in Communications, 2005, 23(7): 1424
CrossRef ADS Google scholar
[3]
G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys, 2007, 2(3): 251
CrossRef ADS Google scholar
[4]
K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A, 2014, 89(2): 022329
CrossRef ADS Google scholar
[5]
A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Unconditional quantum teleportation, Science, 1998, 282(5389): 706
CrossRef ADS Google scholar
[6]
X. T. Yu, X. Jin, and Z. C. Zhang, Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation, Acta Phys. Sin., 2012, 61(22): 220303
[7]
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 1993, 70(13): 1895
CrossRef ADS Google scholar
[8]
L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Entanglement purification of Gaussian continuous variable quantum states, Phys. Rev. Lett., 2000, 84(17): 4002
CrossRef ADS Google scholar
[9]
Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A, 2001, 64(1): 014301
CrossRef ADS Google scholar
[10]
L. Zhou, Y. B. Sheng, W. W. Cheng, L. Y. Gong, and S. M. Zhao, Efficient entanglement concentration for arbitrary less-entangled NOON states, Quantum Inf. Process, 2013, 12(2): 1307
CrossRef ADS Google scholar
[11]
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A, 2012, 85(4): 042302
CrossRef ADS Google scholar
[12]
Y. B. Sheng, L. Zhou, and G. L. Long, Hybrid entanglement purification for quantum repeaters, Phys. Rev. A, 2013, 88(2): 022302
CrossRef ADS Google scholar
[13]
H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, Entanglement distillation from Gaussian input states, Nat. Photonics, 2010, 4(3): 178
CrossRef ADS Google scholar
[14]
Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Single-photon entanglement concentration for long-distance quantum communication, Quantum Inf. Comput., 2010, 10(3): 272
[15]
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, 53(4): 2046
CrossRef ADS Google scholar
[16]
M. Hayashi, General formulas for fixed-length quantum entanglement concentration, IEEE Trans. Inf. Theory, 2006, 52(5): 1904
CrossRef ADS Google scholar
[17]
G. Giedke, and J. I. Cirac, Characterization of Gaussian operations and distillation of Gaussian states, Phys. Rev. A, 2002, 66(3): 032316
CrossRef ADS Google scholar
[18]
S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A, 1999, 60(1): 194
CrossRef ADS Google scholar
[19]
B. S. Shi, Y. K. Jiang, and G. C. Guo, Optimal entanglement purification via entanglement swapping, Phys. Rev. A, 2000, 62(5): 054301
CrossRef ADS Google scholar
[20]
F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A, 2012, 85(2): 022311
CrossRef ADS Google scholar
[21]
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A, 2012, 85(1): 012307
CrossRef ADS Google scholar
[22]
S. Broadfoot, U. Dorner, and D. Jaksch, Singlet generation in mixed-state quantum networks, Phys. Rev. A, 2010, 81(4): 042316
CrossRef ADS Google scholar
[23]
H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons, J. Phys. At. Mol. Opt. Phys., 2010, 43(23): 235501
CrossRef ADS Google scholar
[24]
J. Fiurášek, Gaussian transformations and distillation of entangled Gaussian states, Phys. Rev. Lett., 2002, 89(13): 137904
CrossRef ADS Google scholar
[25]
J. Fiurášsek, Distillation and purification of symmetric entangled Gaussian states, Phys. Rev. A, 2010, 82(4): 042331
CrossRef ADS Google scholar
[26]
G. Gour, Faithful teleportation with partially entangled states, Phys. Rev. A, 2004, 70(4): 042301
CrossRef ADS Google scholar
[27]
A. Kumar, S. Adhikari, S. Banerjee, and S. Roy, Optimal quantum communication using multiparticle partially entangled states, Phys. Rev. A, 2013, 87(2): 022307
CrossRef ADS Google scholar
[28]
H. J. Cao, Y. Q. Guo, and H. S. Song, Teleportation of an unknown bipartite state via non-maximally entangled twoparticle state, Chin. Phys., 2006, 15(5): 915
CrossRef ADS Google scholar
[29]
W. L. Li, C. F. Li, and G. C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A, 2000, 61(3): 034301
CrossRef ADS Google scholar
[30]
Z. X. Man and Y. J. Xia, Quantum secure direct communication via partially entangled states, Chin. Phys., 2007, 16(5): 1197
CrossRef ADS Google scholar
[31]
H. Y. Dai, P. X. Chen, and C. Z. Li, Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state, Opt. Commun., 2004, 231(1-6): 281
[32]
J. Modawska and A. Grudka, Nonmaximally entangled states can be better for multiple linear optical teleportation, Phys. Rev. Lett., 2008, 100(11): 110503
CrossRef ADS Google scholar
[33]
X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B, 2013, 22(9): 090311
CrossRef ADS Google scholar
[34]
G. Rigolin, Unity fidelity multiple teleportation usingpartially entangled states, J. Phys. At. Mol. Opt. Phys., 2009, 42(23): 235504
CrossRef ADS Google scholar
[35]
B. S. Shi, Y. K. Jiang, and G. C. Guo, Probabilistic teleportation of two-particle entangled state, Phys. Lett. A, 2000, 268(3): 161
CrossRef ADS Google scholar
[36]
Y. J. Gu, Y. Z. Zheng, and G. C. Gu, Probabilistic teleportation of an arbitrary two-particle state, Chin. Phys. Lett., 2001, 18(12): 1543
CrossRef ADS Google scholar
[37]
F. L. Yan and H. W. Ding, Probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure, Chin. Phys. Lett., 2006, 23(1): 17
CrossRef ADS Google scholar
[38]
G. Gordon and G. Rigolin, Generalized teleportation protocol, Phys. Lett. A, 2006, 73(4): 042309
[39]
G. Gordon and G. Rigolin, Generalized quantum-state sharing, Phys. Lett. A, 2006, 73(6): 062316
[40]
X. T. Yu, Z. C. Zhang, and J. Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B, 2014, 23(1): 010303
CrossRef ADS Google scholar
[41]
M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys, 2013, 8(4): 357
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(182 KB)

Accesses

Citations

Detail

Sections
Recommended

/