Secondary plasmon resonance in graphene nanostructures

Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng

PDF(404 KB)
PDF(404 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (1) : 103101. DOI: 10.1007/s11467-014-0430-4
Condensed Matter, Materials Physics, and Statistical Physics
Condensed Matter, Materials Physics, and Statistical Physics

Secondary plasmon resonance in graphene nanostructures

Author information +
History +

Abstract

The plasmon characteristics of two graphene nanostructures are studied using time-dependent density functional theory (TDDFT). The absorption spectrum has two main bands, which result from π and σ + π plasmon resonances. At low energies, the Fourier transform of the induced charge density maps exhibits anomalous behavior, with a π phase change in the charge density maps in the plane of the graphene and those in the plane 0.3 Å from the graphene. The charge density fluctuations close to the plane of the graphene are much smaller than those above and beneath the graphene plane. However, this phenomenon disappears at higher energies. By analyzing the electronic properties, we may conclude that the restoring force for the plasmon in the plane of the graphene does not result from fixed positive ions, but rather the Coulomb interactions with the plasmonic oscillations away from the plane of the graphene, which extend in the surface-normal direction. The collective oscillation in the graphene plane results in a forced vibration. Accordingly, the low-energy plasmon in the graphene can be split into two components: a normal component, which corresponds to direct feedback of the external perturbation, and a secondary component, which corresponds to feedback of the Coulombic interaction with the normal component.

Graphical abstract

Keywords

time-dependent density functional theory (TDDFT) / graphene nanostructure / plasmon / induced charge

Cite this article

Download citation ▾
Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng. Secondary plasmon resonance in graphene nanostructures. Front. Phys., 2015, 10(1): 103101 https://doi.org/10.1007/s11467-014-0430-4

References

[1]
A. H. Atwater, The promise of plasmonics, Sci. Am.296(4), 56 (2007)
CrossRef ADS Google scholar
[2]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater.9(3), 193 (2010)
CrossRef ADS Google scholar
[3]
P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Searching for better plasmonic materials, Laser & Photonics Reviews4(6), 795 (2010)
CrossRef ADS Google scholar
[4]
M. I. Stockman, Nanoplasmonics: The physics behind the applications, Phys. Today64(2), 39 (2011)
CrossRef ADS Google scholar
[5]
L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys.9(1), 1 (2014)
CrossRef ADS Google scholar
[6]
N. Nayyar, A. Kabir, V. Turkowski, and T. S. Rahman, Transition metal impurity-induced generation of plasmonic collective modes in small gold clusters, arXiv: 1109.0905v1 (2011)
[7]
H. F. Yin and H. Zhang, Plasmons in graphene nanostructures, J. Appl. Phys.111(10), 103502 (2012)
CrossRef ADS Google scholar
[8]
S. M. Nie and S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science275(5303), 1102 (1997)
CrossRef ADS Google scholar
[9]
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett.83(21), 4357 (1999)
CrossRef ADS Google scholar
[10]
A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science299(5613), 1688 (2003)
CrossRef ADS Google scholar
[11]
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA100(23), 13549 (2003)
CrossRef ADS Google scholar
[12]
S. Lal, S. Link, and N. J. Halas, Nano-optics from sensing to waveguiding, Nat. Photonics1(11), 641 (2007)
CrossRef ADS Google scholar
[13]
P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Ultrasmooth patterned metals for plasmonics and metamaterials, Science325(5940), 594 (2009)
CrossRef ADS Google scholar
[14]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature424(6950), 824 (2003)
CrossRef ADS Google scholar
[15]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B107(3), 668 (2003)
CrossRef ADS Google scholar
[16]
J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces, Science305(5685), 847 (2004)
CrossRef ADS Google scholar
[17]
C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys.6(3), 271 (2011)
CrossRef ADS Google scholar
[18]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438(7065), 197 (2005)
CrossRef ADS Google scholar
[19]
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science313(5789), 951 (2006)
CrossRef ADS Google scholar
[20]
M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett.101, 267601 (2008)
CrossRef ADS Google scholar
[21]
M. Jablan, H. Buljan, and M. Soljacic, Plasmonics in graphene at infrared frequencies, Phys. Rev. B80, 245435 (2009)
CrossRef ADS Google scholar
[22]
A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science331(6015), 290 (2011)
CrossRef ADS Google scholar
[23]
F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Graphene plasmonics: A platform for strong light–matter interactions, Nano Lett.11(8), 3370 (2011)
CrossRef ADS Google scholar
[24]
W. Wang, P. Apell, and J. Kinaret, Edge plasmons in graphene nanostructures, Phys. Rev. B84, 085423 (2011)
CrossRef ADS Google scholar
[25]
J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature487, 77 (2012)
[26]
Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. CastroNeto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature487, 82 (2012)
[27]
A. Rubio, J. A. Alonso, J. M. Lopez, and M. J. Stott, Surface plasmon excitations in C60, C60K and C60H clusters, Physica B183(3), 247 (1993)
CrossRef ADS Google scholar
[28]
J. Yan, Z. Yuan, and S. W. Gao, End and Central plasmon resonances in linear atomic chains, Phys. Rev. Lett. 98, 216602 (2007)
CrossRef ADS Google scholar
[29]
R. W. Burgess and V. J. Keast, TDDFT study of the optical absorption spectra of bare and coated Au55 and Au69 clusters, J. Phys. Chem. C115(43), 21016 (2011)
CrossRef ADS Google scholar
[30]
H. C. Weissker and C. Mottet, Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure, Phys. Rev. B84, 165443 (2011)
CrossRef ADS Google scholar
[31]
L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, Performance of nonlocal optics when applied to plasmonic nanostructures, J. Phys. Chem. C117(17), 8941 (2013)
CrossRef ADS Google scholar
[32]
K. Yabana and G. F. Bertsch, Time-dependent local-density approximation in real time, Phys. Rev. B54(7), 4484 (1996)
CrossRef ADS Google scholar
[33]
C. Jamorski, M. E. Casida, and D. R. Salahub, Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study, J. Chem. Phys.104(13), 5134 (1996)
CrossRef ADS Google scholar
[34]
J.O. Joswig, L. O. Tunturivuori, and R. M. Nieminen, Photoabsorption in sodium clusters on the basis of time-dependent density-functional theory, J. Chem. Phys.128(1), 014707 (2008)
CrossRef ADS Google scholar
[35]
M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Octopus: A first-principles tool for excited electron–ion dynamics, Comput. Phys. Commun.151(1), 60 (2003)
CrossRef ADS Google scholar
[36]
N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B43(3), 1993 (1991)
CrossRef ADS Google scholar
[37]
A. Marinopoulos, L. Reining, V. Olevano, A. Robio, T, Pichler, X. Liu, M. Knupfer, and J. Fink, Anisotropy and interplane interactions in the dielectric response of graphite, Phys. Rev. Lett.89(7): 076402 (2002)
CrossRef ADS Google scholar
[38]
F. H. Yinand H. Zhang, Collectivity of plasmon excitations in small sodium clusters with planar structure, Physica B407(3), 416 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(404 KB)

Accesses

Citations

Detail

Sections
Recommended

/