Secondary plasmon resonance in graphene nanostructures

Yang Li , Hong Zhang , Da-Wei Yan , Hai-Feng Yin , Xin-Lu Cheng

Front. Phys. ›› 2015, Vol. 10 ›› Issue (1) : 103101

PDF (404KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (1) : 103101 DOI: 10.1007/s11467-014-0430-4
Condensed Matter, Materials Physics, and Statistical Physics

Secondary plasmon resonance in graphene nanostructures

Author information +
History +
PDF (404KB)

Abstract

The plasmon characteristics of two graphene nanostructures are studied using time-dependent density functional theory (TDDFT). The absorption spectrum has two main bands, which result from π and σ + π plasmon resonances. At low energies, the Fourier transform of the induced charge density maps exhibits anomalous behavior, with a π phase change in the charge density maps in the plane of the graphene and those in the plane 0.3 Å from the graphene. The charge density fluctuations close to the plane of the graphene are much smaller than those above and beneath the graphene plane. However, this phenomenon disappears at higher energies. By analyzing the electronic properties, we may conclude that the restoring force for the plasmon in the plane of the graphene does not result from fixed positive ions, but rather the Coulomb interactions with the plasmonic oscillations away from the plane of the graphene, which extend in the surface-normal direction. The collective oscillation in the graphene plane results in a forced vibration. Accordingly, the low-energy plasmon in the graphene can be split into two components: a normal component, which corresponds to direct feedback of the external perturbation, and a secondary component, which corresponds to feedback of the Coulombic interaction with the normal component.

Graphical abstract

Keywords

time-dependent density functional theory (TDDFT) / graphene nanostructure / plasmon / induced charge

Cite this article

Download citation ▾
Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng. Secondary plasmon resonance in graphene nanostructures. Front. Phys., 2015, 10(1): 103101 DOI:10.1007/s11467-014-0430-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. H. Atwater, The promise of plasmonics, Sci. Am.296(4), 56 (2007)

[2]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater.9(3), 193 (2010)

[3]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Searching for better plasmonic materials, Laser & Photonics Reviews4(6), 795 (2010)

[4]

M. I. Stockman, Nanoplasmonics: The physics behind the applications, Phys. Today64(2), 39 (2011)

[5]

L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys.9(1), 1 (2014)

[6]

N. Nayyar, A. Kabir, V. Turkowski, and T. S. Rahman, Transition metal impurity-induced generation of plasmonic collective modes in small gold clusters, arXiv: 1109.0905v1 (2011)

[7]

H. F. Yin and H. Zhang, Plasmons in graphene nanostructures, J. Appl. Phys.111(10), 103502 (2012)

[8]

S. M. Nie and S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science275(5303), 1102 (1997)

[9]

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett.83(21), 4357 (1999)

[10]

A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science299(5613), 1688 (2003)

[11]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA100(23), 13549 (2003)

[12]

S. Lal, S. Link, and N. J. Halas, Nano-optics from sensing to waveguiding, Nat. Photonics1(11), 641 (2007)

[13]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, Ultrasmooth patterned metals for plasmonics and metamaterials, Science325(5940), 594 (2009)

[14]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature424(6950), 824 (2003)

[15]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B107(3), 668 (2003)

[16]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces, Science305(5685), 847 (2004)

[17]

C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys.6(3), 271 (2011)

[18]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438(7065), 197 (2005)

[19]

T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science313(5789), 951 (2006)

[20]

M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett.101, 267601 (2008)

[21]

M. Jablan, H. Buljan, and M. Soljacic, Plasmonics in graphene at infrared frequencies, Phys. Rev. B80, 245435 (2009)

[22]

A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science331(6015), 290 (2011)

[23]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Graphene plasmonics: A platform for strong light–matter interactions, Nano Lett.11(8), 3370 (2011)

[24]

W. Wang, P. Apell, and J. Kinaret, Edge plasmons in graphene nanostructures, Phys. Rev. B84, 085423 (2011)

[25]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature487, 77 (2012)

[26]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. CastroNeto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature487, 82 (2012)

[27]

A. Rubio, J. A. Alonso, J. M. Lopez, and M. J. Stott, Surface plasmon excitations in C60, C60K and C60H clusters, Physica B183(3), 247 (1993)

[28]

J. Yan, Z. Yuan, and S. W. Gao, End and Central plasmon resonances in linear atomic chains, Phys. Rev. Lett. 98, 216602 (2007)

[29]

R. W. Burgess and V. J. Keast, TDDFT study of the optical absorption spectra of bare and coated Au55 and Au69 clusters, J. Phys. Chem. C115(43), 21016 (2011)

[30]

H. C. Weissker and C. Mottet, Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure, Phys. Rev. B84, 165443 (2011)

[31]

L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, Performance of nonlocal optics when applied to plasmonic nanostructures, J. Phys. Chem. C117(17), 8941 (2013)

[32]

K. Yabana and G. F. Bertsch, Time-dependent local-density approximation in real time, Phys. Rev. B54(7), 4484 (1996)

[33]

C. Jamorski, M. E. Casida, and D. R. Salahub, Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study, J. Chem. Phys.104(13), 5134 (1996)

[34]

J.O. Joswig, L. O. Tunturivuori, and R. M. Nieminen, Photoabsorption in sodium clusters on the basis of time-dependent density-functional theory, J. Chem. Phys.128(1), 014707 (2008)

[35]

M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Octopus: A first-principles tool for excited electron–ion dynamics, Comput. Phys. Commun.151(1), 60 (2003)

[36]

N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B43(3), 1993 (1991)

[37]

A. Marinopoulos, L. Reining, V. Olevano, A. Robio, T, Pichler, X. Liu, M. Knupfer, and J. Fink, Anisotropy and interplane interactions in the dielectric response of graphite, Phys. Rev. Lett.89(7): 076402 (2002)

[38]

F. H. Yinand H. Zhang, Collectivity of plasmon excitations in small sodium clusters with planar structure, Physica B407(3), 416 (2012)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (404KB)

993

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/