Electronic and magnetic structures of chain structured iron selenide compounds
Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu
Electronic and magnetic structures of chain structured iron selenide compounds
Electronic and magnetic structures of iron selenide compounds Ce2O2FeSe2 (2212*) and BaFe2Se3 (123*) are studied by the first-principles calculations. We find that while all these compounds are composed of one-dimensional (1D) Fe chain (or ladder) structures, their electronic structures are not close to be quasi-1D. The magnetic exchange couplings between two nearest-neighbor (NN) chains in 2212*and between two NN two-leg-ladders in 123*are both antiferromagnetic (AFM), which is consistent with the presence of significant third NN AFM coupling, a common feature shared in other iron-chalcogenides, FeTe (11*) and KyFe2-xSe2 (122*). In magnetic ground states, each Fe chain of 2212*is ferromagnetic and each two-leg ladder of 123*form a block-AFM structure. We suggest that all magnetic structures in iron-selenide compounds can be unified into an extended J1–J2–J3 model. Spin-wave excitations of the model are calculated and can be tested by future experiments on these two systems.
first-principles calculations / magnetism / spin-wave excitations
[1] |
J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B, 2010, 82: 180520(R)
CrossRef
ADS
Google scholar
|
[2] |
H. Lei, M. Abeykoon, E. S. Bozin, and C. Petrovic, Spin glass behavior of insulating K0.8Fe2-xS2, Phys. Rev. B, 2011, 83: 180503(R)
CrossRef
ADS
Google scholar
|
[3] |
A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc = 27 K, J. Phys.: Condens. Matter, 2011, 23(5): 052203
CrossRef
ADS
Google scholar
|
[4] |
R. H. Liu, X. G. Luo, M. Zhang, A. F. Wang, J. J. Ying, X. F. Wang, Y. J. Yan, Z. J. Xiang, P. Cheng, G. J. Ye, Z. Y. Li, and X. H. Chen, Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2-ySe2 (A=K, Rb, Cs, Tl/K and Tl/Rb): Evidence from magnetization and resistivity, Europhys. Lett., 2011, 94(2): 27008
CrossRef
ADS
Google scholar
|
[5] |
M. Fang, H. Wang, C. Dong, Z. Li, C. Feng, J. Chen, and H. Q. Yuan, Fe-based superconductivity with Tc =31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2, Europhys. Lett., 2011, 94(2): 27009
CrossRef
ADS
Google scholar
|
[6] |
Z. G. Chen, R. H. Yuan, T. Dong, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, J. G. Guo, X. L. Chen, and N. L. Wang, Infrared spectrum and its implications for the electronic structure of the semiconducting iron selenide K0.83Fe1.53Se2, Phys. Rev. B, 2011, 83: 220507(R)
CrossRef
ADS
Google scholar
|
[7] |
W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6S2 superconductor, Chin. Phys. Lett., 2011, 28(8): 086104
CrossRef
ADS
Google scholar
|
[8] |
V. Yu. Pomjakushin, D. V. Sheptyakov, E. V. Pomjakushina, A. Krzton-Maziopa, K. Conder, D. Chernyshov, V. Svitlyk, and Z. Shermadini, Iron-vacancy superstructure and possible room-temperature antiferromagnetic order in superconducting CsyFe2-xSe2, Phys. Rev. B, 2011, 83(14): 144410
CrossRef
ADS
Google scholar
|
[9] |
Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy, Phys. Rev. B, 2011, 83: 140505(R)
CrossRef
ADS
Google scholar
|
[10] |
P. Zavalij, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, D. M. Wang, J. B. He, X. Q. Wang, G. F. Chen, P. Y. Hsieh, Q. Huang, and M. A. Green, Structure of vacancy-ordered single-crystalline superconducting potassium iron selenide, Phys. Rev. B, 2011, 83(13): 132509
CrossRef
ADS
Google scholar
|
[11] |
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor, Phys. Rev. B, 2011, 83(23): 233205
CrossRef
ADS
Google scholar
|
[12] |
C. Cao and J. Dai, Block spin ground state and threedimensionality of (K,Tl)yFe1.6Se2, Phys. Rev. Lett., 2011, 107(5): 056401
CrossRef
ADS
Google scholar
|
[13] |
I. A. Nebrasov and M. V. Sadovskii, Electronic structure, topological phase transitions and superconductivity in (K,Cs)xFe2Se2, JETP Lett., 2011, 93(3): 166
CrossRef
ADS
Google scholar
|
[14] |
I. R. Shein and A. L. Ivanovskii, Electronic structure and Fermi surface of new K intercalated iron selenide superconductor KxFe2Se2, arXiv: 1012.5164, 2010
|
[15] |
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic and magnetic structures of the ternary iron selenides AFe2Se2 (A=Cs, Rb, K, or Tl), Phys. Rev. B, 2011, 84(5): 054502 16.
|
[16] |
C. Cao and J. Dai, Electronic structure of KFe2Se2 from first-principles calculations, Chin. Phys. Lett., 2011, 28(5): 057402
CrossRef
ADS
Google scholar
|
[17] |
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater., 2011, 10(4): 273
CrossRef
ADS
Google scholar
|
[18] |
T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the iron-based K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett., 2011, 106(18): 187001
CrossRef
ADS
Google scholar
|
[19] |
E. E. McCabe, D. G. Free, and J. S. O. Evans, A new iron oxyselenide Ce2O2FeSe2: Synthesis and characterisation, Chem. Commun., 2011, 47(4): 1261
CrossRef
ADS
Google scholar
|
[20] |
A. Krzton-Maziopa, E. Pomjakushina, V. Pomjakushin, D. Sheptyakov, D. Chernyshov, V. Svitlyk, and K. Conder, The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3 with possible superconductivity at Tc = 11 K, J. Phys.: Condens. Matter, 2011, 23(40): 402201
CrossRef
ADS
Google scholar
|
[21] |
J. M. Caron, J. R. Neilson, D. C. Miller, A. Llobet, and T. M. McQueen, Iron displacements and magnetoelastic coupling in the antiferromagnetic spin-ladder compound BaFe2Se3, Phys. Rev. B, 2011, 84: 180409(R)
CrossRef
ADS
Google scholar
|
[22] |
B. Saparov, S. Calder, B. Sipos, H. Cao, S. Chi, D. J. Singh, A. D. Christianson, M. D. Lumsden, and A. S. Sefat, Spin glass and semiconducting behavior in one-dimensional BaFe2-δSe3 (δ≈ 0.2) crystals, Phys. Rev. B, 2011, 84(24): 245132
CrossRef
ADS
Google scholar
|
[23] |
J. M. Caron, J. R. Neilson, D. C. Miller, K. Arpino, A. Llobet, T. M. McQueen, Orbital-selective magnetism in the spin-ladder iron selenides Ba1-xKxFe2Se3, Phys. Rev. B, 2012, 85: 180405(R)
CrossRef
ADS
Google scholar
|
[24] |
M. A. III McCarron, J. C. Subramanian, J. C. Calabrese, and R. L. Harlow, The incommensurate structure of (Sr14-xCax)Cu24O41 (0<x∼ 8) a superconductor byproduct, Mater. Res. Bull., 1988, 23(9): 1355
CrossRef
ADS
Google scholar
|
[25] |
T. Siegrist, L. F. Schneemeyer, S. A. Sunshine, J. V. Waszczak, and R. S. Roth, A new layered cuprate structure-type, (A1-xA'x)14Cu24O41, Mater. Res. Bull., 1988, 23(10): 1429
CrossRef
ADS
Google scholar
|
[26] |
T. Nakano, K. Kuroki, and S. Onari, Fluctuation exchange study on the double chain superconductor, Physica B, 2008, 403(5-9): 1159
|
[27] |
W. Li, S. Dong, C. Fang, and J. Hu, Block antiferromagnetism and checkerboard charge ordering in the alkalidoped iron selenides R1-xFe2-ySe, Phys. Rev. B, 2012, 85: 100407(R)
CrossRef
ADS
Google scholar
|
[28] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 1994, 50(24): 17953
CrossRef
ADS
Google scholar
|
[29] |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[30] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[31] |
L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, Local moment vs. Kondo behavior of the 4f-electrons in rareearth iron oxypnictides, Europhys. Lett., 2008, 84(3): 37006
CrossRef
ADS
Google scholar
|
[32] |
J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports, 2012, 2: 381
CrossRef
ADS
Google scholar
|
[33] |
J. P. Hu, B. Xu, W. Liu, N. Hao, and Y. P. Wang, Unified minimum effective model of magnetic properties of ironbased superconductors, Phys. Rev. B, 2012, 85(14): 144403
CrossRef
ADS
Google scholar
|
[34] |
O. J. Lipscombe, G. F. Chen, C. Fang, T. G. Perring, D. L. Abernathy, A. D. Christianson, T. Egami, N. Wang, J. Hu, and P. Dai, Spin waves in the (π,0) magnetically ordered iron chalcogenide Fe1.05Te, Phys. Rev. Lett., 2011, 106(5): 057004
CrossRef
ADS
Google scholar
|
[35] |
M. Wang, C. Fang, D. X. Yao, G. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang, M. Wang, M. B. Stone, W. Tian, J. Hu, and P. Dai, Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2, Nat. Commun., 2011, 2: 580
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |