Electronic and magnetic structures of chain structured iron selenide compounds

Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu

PDF(548 KB)
PDF(548 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 465-471. DOI: 10.1007/s11467-014-0428-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic and magnetic structures of chain structured iron selenide compounds

Author information +
History +

Abstract

Electronic and magnetic structures of iron selenide compounds Ce2O2FeSe2 (2212*) and BaFe2Se3 (123*) are studied by the first-principles calculations. We find that while all these compounds are composed of one-dimensional (1D) Fe chain (or ladder) structures, their electronic structures are not close to be quasi-1D. The magnetic exchange couplings between two nearest-neighbor (NN) chains in 2212*and between two NN two-leg-ladders in 123*are both antiferromagnetic (AFM), which is consistent with the presence of significant third NN AFM coupling, a common feature shared in other iron-chalcogenides, FeTe (11*) and KyFe2-xSe2 (122*). In magnetic ground states, each Fe chain of 2212*is ferromagnetic and each two-leg ladder of 123*form a block-AFM structure. We suggest that all magnetic structures in iron-selenide compounds can be unified into an extended J1J2J3 model. Spin-wave excitations of the model are calculated and can be tested by future experiments on these two systems.

Graphical abstract

Keywords

first-principles calculations / magnetism / spin-wave excitations

Cite this article

Download citation ▾
Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu. Electronic and magnetic structures of chain structured iron selenide compounds. Front. Phys., 2014, 9(4): 465‒471 https://doi.org/10.1007/s11467-014-0428-y

References

[1]
J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B, 2010, 82: 180520(R)
CrossRef ADS Google scholar
[2]
H. Lei, M. Abeykoon, E. S. Bozin, and C. Petrovic, Spin glass behavior of insulating K0.8Fe2-xS2, Phys. Rev. B, 2011, 83: 180503(R)
CrossRef ADS Google scholar
[3]
A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc = 27 K, J. Phys.: Condens. Matter, 2011, 23(5): 052203
CrossRef ADS Google scholar
[4]
R. H. Liu, X. G. Luo, M. Zhang, A. F. Wang, J. J. Ying, X. F. Wang, Y. J. Yan, Z. J. Xiang, P. Cheng, G. J. Ye, Z. Y. Li, and X. H. Chen, Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2-ySe2 (A=K, Rb, Cs, Tl/K and Tl/Rb): Evidence from magnetization and resistivity, Europhys. Lett., 2011, 94(2): 27008
CrossRef ADS Google scholar
[5]
M. Fang, H. Wang, C. Dong, Z. Li, C. Feng, J. Chen, and H. Q. Yuan, Fe-based superconductivity with Tc =31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2, Europhys. Lett., 2011, 94(2): 27009
CrossRef ADS Google scholar
[6]
Z. G. Chen, R. H. Yuan, T. Dong, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, J. G. Guo, X. L. Chen, and N. L. Wang, Infrared spectrum and its implications for the electronic structure of the semiconducting iron selenide K0.83Fe1.53Se2, Phys. Rev. B, 2011, 83: 220507(R)
CrossRef ADS Google scholar
[7]
W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6S2 superconductor, Chin. Phys. Lett., 2011, 28(8): 086104
CrossRef ADS Google scholar
[8]
V. Yu. Pomjakushin, D. V. Sheptyakov, E. V. Pomjakushina, A. Krzton-Maziopa, K. Conder, D. Chernyshov, V. Svitlyk, and Z. Shermadini, Iron-vacancy superstructure and possible room-temperature antiferromagnetic order in superconducting CsyFe2-xSe2, Phys. Rev. B, 2011, 83(14): 144410
CrossRef ADS Google scholar
[9]
Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy, Phys. Rev. B, 2011, 83: 140505(R)
CrossRef ADS Google scholar
[10]
P. Zavalij, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, D. M. Wang, J. B. He, X. Q. Wang, G. F. Chen, P. Y. Hsieh, Q. Huang, and M. A. Green, Structure of vacancy-ordered single-crystalline superconducting potassium iron selenide, Phys. Rev. B, 2011, 83(13): 132509
CrossRef ADS Google scholar
[11]
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor, Phys. Rev. B, 2011, 83(23): 233205
CrossRef ADS Google scholar
[12]
C. Cao and J. Dai, Block spin ground state and threedimensionality of (K,Tl)yFe1.6Se2, Phys. Rev. Lett., 2011, 107(5): 056401
CrossRef ADS Google scholar
[13]
I. A. Nebrasov and M. V. Sadovskii, Electronic structure, topological phase transitions and superconductivity in (K,Cs)xFe2Se2, JETP Lett., 2011, 93(3): 166
CrossRef ADS Google scholar
[14]
I. R. Shein and A. L. Ivanovskii, Electronic structure and Fermi surface of new K intercalated iron selenide superconductor KxFe2Se2, arXiv: 1012.5164, 2010
[15]
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic and magnetic structures of the ternary iron selenides AFe2Se2 (A=Cs, Rb, K, or Tl), Phys. Rev. B, 2011, 84(5): 054502 16.
[16]
C. Cao and J. Dai, Electronic structure of KFe2Se2 from first-principles calculations, Chin. Phys. Lett., 2011, 28(5): 057402
CrossRef ADS Google scholar
[17]
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater., 2011, 10(4): 273
CrossRef ADS Google scholar
[18]
T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the iron-based K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett., 2011, 106(18): 187001
CrossRef ADS Google scholar
[19]
E. E. McCabe, D. G. Free, and J. S. O. Evans, A new iron oxyselenide Ce2O2FeSe2: Synthesis and characterisation, Chem. Commun., 2011, 47(4): 1261
CrossRef ADS Google scholar
[20]
A. Krzton-Maziopa, E. Pomjakushina, V. Pomjakushin, D. Sheptyakov, D. Chernyshov, V. Svitlyk, and K. Conder, The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3 with possible superconductivity at Tc = 11 K, J. Phys.: Condens. Matter, 2011, 23(40): 402201
CrossRef ADS Google scholar
[21]
J. M. Caron, J. R. Neilson, D. C. Miller, A. Llobet, and T. M. McQueen, Iron displacements and magnetoelastic coupling in the antiferromagnetic spin-ladder compound BaFe2Se3, Phys. Rev. B, 2011, 84: 180409(R)
CrossRef ADS Google scholar
[22]
B. Saparov, S. Calder, B. Sipos, H. Cao, S. Chi, D. J. Singh, A. D. Christianson, M. D. Lumsden, and A. S. Sefat, Spin glass and semiconducting behavior in one-dimensional BaFe2-δSe3 (δ≈ 0.2) crystals, Phys. Rev. B, 2011, 84(24): 245132
CrossRef ADS Google scholar
[23]
J. M. Caron, J. R. Neilson, D. C. Miller, K. Arpino, A. Llobet, T. M. McQueen, Orbital-selective magnetism in the spin-ladder iron selenides Ba1-xKxFe2Se3, Phys. Rev. B, 2012, 85: 180405(R)
CrossRef ADS Google scholar
[24]
M. A. III McCarron, J. C. Subramanian, J. C. Calabrese, and R. L. Harlow, The incommensurate structure of (Sr14-xCax)Cu24O41 (0<x∼ 8) a superconductor byproduct, Mater. Res. Bull., 1988, 23(9): 1355
CrossRef ADS Google scholar
[25]
T. Siegrist, L. F. Schneemeyer, S. A. Sunshine, J. V. Waszczak, and R. S. Roth, A new layered cuprate structure-type, (A1-xA'x)14Cu24O41, Mater. Res. Bull., 1988, 23(10): 1429
CrossRef ADS Google scholar
[26]
T. Nakano, K. Kuroki, and S. Onari, Fluctuation exchange study on the double chain superconductor, Physica B, 2008, 403(5-9): 1159
[27]
W. Li, S. Dong, C. Fang, and J. Hu, Block antiferromagnetism and checkerboard charge ordering in the alkalidoped iron selenides R1-xFe2-ySe, Phys. Rev. B, 2012, 85: 100407(R)
CrossRef ADS Google scholar
[28]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[29]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[30]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[31]
L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, Local moment vs. Kondo behavior of the 4f-electrons in rareearth iron oxypnictides, Europhys. Lett., 2008, 84(3): 37006
CrossRef ADS Google scholar
[32]
J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports, 2012, 2: 381
CrossRef ADS Google scholar
[33]
J. P. Hu, B. Xu, W. Liu, N. Hao, and Y. P. Wang, Unified minimum effective model of magnetic properties of ironbased superconductors, Phys. Rev. B, 2012, 85(14): 144403
CrossRef ADS Google scholar
[34]
O. J. Lipscombe, G. F. Chen, C. Fang, T. G. Perring, D. L. Abernathy, A. D. Christianson, T. Egami, N. Wang, J. Hu, and P. Dai, Spin waves in the (π,0) magnetically ordered iron chalcogenide Fe1.05Te, Phys. Rev. Lett., 2011, 106(5): 057004
CrossRef ADS Google scholar
[35]
M. Wang, C. Fang, D. X. Yao, G. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang, M. Wang, M. B. Stone, W. Tian, J. Hu, and P. Dai, Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2, Nat. Commun., 2011, 2: 580
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(548 KB)

Accesses

Citations

Detail

Sections
Recommended

/