Dynamics of rotator chain with dissipative boundary
Pu Ke, Zhi-Gang Zheng
Dynamics of rotator chain with dissipative boundary
We study the deterministic dynamics of rotator chain with purely mechanical driving on the boundary by stability analysis and numerical simulation. Globally synchronous rotation, clustered synchronous rotation, and split synchronous rotation states are identified. In particular, we find that the single-peaked variance distribution of angular momenta is the consequence of the deterministic dynamics. As a result, the operational definition of temperature used in the previous studies on rotator chain should be revisited.
rotator chain / energy conduction
[1] |
A. Dhar, Heat transport in low-dimensional systems, Adv. Phys., 2008, 57(5): 457
CrossRef
ADS
Google scholar
|
[2] |
S. Lepri, R. Livi, and A. Politi, Heat conduction in chains of nonlinear oscillators, Phys. Rev. Lett., 1997, 78(10): 1896
CrossRef
ADS
Google scholar
|
[3] |
G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Onedimensional classical many-body system having a normal thermal conductivity, Phys. Rev. Lett., 1984, 52(21): 1861
CrossRef
ADS
Google scholar
|
[4] |
A. V. Savin and O. V. Gendelman, Heat conduction in onedimensional lattices with on-site potential, Phys. Rev. E, 2003, 67(4): 041205
CrossRef
ADS
Google scholar
|
[5] |
Y. Zhong, Y. Zhang, J. Wang, and H. Zhao, Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions, Phys. Rev. E, 2012, 85(6): 060102
CrossRef
ADS
Google scholar
|
[6] |
C. Giardinà, R. Livi, A. Politi, and M. Vassalli, Finite thermal conductivity in 1D lattices, Phys. Rev. Lett., 2000, 84(10): 2144
CrossRef
ADS
Google scholar
|
[7] |
O. V. Gendelman and A. V. Savin, Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction, Phys. Rev. Lett., 2000, 84(11): 2381
CrossRef
ADS
Google scholar
|
[8] |
A. Iacobucci, F. Legoll, S. Olla, and G. Stoltz, Negative thermal conductivity of chains of rotors with mechanical forcing, Phys. Rev. E, 2011, 84(6): 061108
CrossRef
ADS
Google scholar
|
[9] |
D. R. Nelson and D. S. Fisher, Dynamics of classical XY spins in one and two dimensions, Phys. Rev. B, 1977, 16(11): 4945
CrossRef
ADS
Google scholar
|
[10] |
C. Anteneodo and C. Tsallis, Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions, Phys. Rev. Lett., 1998, 80(24): 5313
CrossRef
ADS
Google scholar
|
[11] |
D. Kulkarni, D. Schmidt, and S. K. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices, Linear Algebra Appl., 1999, 297(1-3): 63
CrossRef
ADS
Google scholar
|
[12] |
R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd Ed., Cambridge: Cambridge University Press, 2012
CrossRef
ADS
Google scholar
|
[13] |
M. Levi, F. Hoppensteadt, and W. Miranker, Q. Appl. Math., 1978, 37
|
[14] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity), 1st Ed., Westview Press, 2001
|
[15] |
J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley Professional), 1st Ed., Wiley-Interscience, 1997
|
[16] |
S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Phys. Rep., 2003, 377(1): 1
CrossRef
ADS
Google scholar
|
[17] |
R. Yuan and P. Ao, Beyond Itô versus Stratonovich, J. Stat. Mech., 2012, 07: P07010
|
[18] |
R. Yuan, X. Wang, Y. Ma, B. Yuan, and P. Ao, Exploring a noisy van der Pol type oscillator with a stochastic approach, Phys. Rev. E, 2013, 87(6): 062109
CrossRef
ADS
Google scholar
|
[19] |
Y. Ma, Q. Tan, R. Yuan, B. Yuan, and P. Ao, Potential function in a continuous dissipative chaotic system: decomposition scheme and role of strange attractor, arXiv: 1208.1654, 2012
|
/
〈 | 〉 |