Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics
Halqem Nizamidin, Abduwali Anwar, Sayipjamal Dulat, Kang Li
Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics
We study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by introducing a shift for the magnetic field, we give the Schrödinger equations in the presence of an external magnetic field both on a noncommutative space and a noncommutative phase space, respectively. Then by solving the Schrödinger equations both on a noncommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. We demonstrate that these phases are geometric and dispersive.
noncommutative quantum mechanics / electric quadrupole moment / quantum phase / noncommutative phase space
[1] |
S. Godfrey and M. A. Doncheski, Signals for noncommutative QED in eγ and γγ collisions, Phys. Rev. D, 2001, 65(1): 015005
CrossRef
ADS
Google scholar
|
[2] |
M. Haghighat and M. M. Ettefaghi, Parton model in Lorentz invariant noncommutative space, Phys. Rev. D, 2004, 70(3): 034017
CrossRef
ADS
Google scholar
|
[3] |
A. Devoto, S. Chiara, and W. W. Repko, Noncommutative QED corrections to e+e-→γγγ at linear collider energies, Phys. Rev. D, 2005, 72(5): 056006
CrossRef
ADS
Google scholar
|
[4] |
X. Calmet, Quantum electrodynamics on noncommutative spacetime, Eur. Phys. J. C, 2007, 50(1): 113
CrossRef
ADS
Google scholar
|
[5] |
M. Chaichian, A. Demichev, P. Prešnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Aharonov–Bohm effect in noncommutative spaces, Phys. Lett. B, 2002, 527(1-2): 149
CrossRef
ADS
Google scholar
|
[6] |
M. Chaichian, A. Demichev, P. Presnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Quantum theories on noncommutative spaces with nontrivial topology: Aharonov–Bohm and Casimir effects, Nucl. Phys. B, 2001, 611(1-3): 383
CrossRef
ADS
Google scholar
|
[7] |
H. Falomir, J. Gamboa, M. Loewe, F. Méndez, and J. Rojas, Testing spatial noncommutativity via the Aharonov–Bohm effect, Phys. Rev. D, 2002, 66(4): 045018
CrossRef
ADS
Google scholar
|
[8] |
K. Li and S. Dulat, The Aharonov–Bohm effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2006, 46(3): 825
CrossRef
ADS
Google scholar
|
[9] |
B. Mirza and M. Zarei, Non-commutative quantum mechanics and the Aharonov–Casher effect, Eur. Phys. J. C, 2004, 32(4): 583
CrossRef
ADS
Google scholar
|
[10] |
K. Li and J. H. Wang, The topological AC effect on noncommutative phase space, Eur. Phys. J. C, 2007, 50(4): 1007
CrossRef
ADS
Google scholar
|
[11] |
B. Mirza, R. Narimani, and M. Zarei, Aharonov–Casher effect for spin-1 particles in a non-commutative space, Eur. Phys. J. C, 2006, 48(2): 641
CrossRef
ADS
Google scholar
|
[12] |
S. Dulat and K. Li, The Aharonov–Casher effect for spin-1 particles in non-commutative quantum mechanics, Eur. Phys. J. C, 2008, 54(2): 333
CrossRef
ADS
Google scholar
|
[13] |
S. Dulat, K. Li, and J. Wang, The He–McKellar–Wilkens effect for spin one particles in non-commutative quantum mechanics, J. Phys. A: Math. Theor., 2008, 41(6): 065303
CrossRef
ADS
Google scholar
|
[14] |
B. Harms and O. Micu, Noncommutative quantum Hall effect and Aharonov–Bohm effect, J. Phys. A, 2007, 40(33): 10337
CrossRef
ADS
Google scholar
|
[15] |
O. F. Dayi and A. Jellal, Hall effect in noncommutative coordinates, J. Math. Phys., 2002, 43(10): 4592
CrossRef
ADS
Google scholar
|
[16] |
O. F. Dayi and A. Jellal, Erratum: “Hall effect in noncommutative coordinates” [J. Math. Phys. 43, 4592 (2002)], J. Math. Phys., 2004, 45(2): 827 (E)
CrossRef
ADS
Google scholar
|
[17] |
A. Kokado, T. Okamura, and T. Saito, Noncommutative phase space and the Hall effect, Prog. Theor. Phys., 2003, 110(5): 975
CrossRef
ADS
Google scholar
|
[18] |
S. Dulat and K. Li, Quantum Hall effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2009, 60(1): 163
CrossRef
ADS
Google scholar
|
[19] |
B. Chakraborty, S. Gangopadhyay, and A. Saha, Seiberg–Witten map and Galilean symmetry violation in a noncommutative planar system, Phys. Rev. D, 2004, 70(10): 107707arXiv: hep-th/0312292
CrossRef
ADS
Google scholar
|
[20] |
F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and A. G. Hazra, Dual families of noncommutative quantum systems, Phys. Rev. D, 2005, 71(8): 085005
CrossRef
ADS
Google scholar
|
[21] |
F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and J. Govaerts, Interactions and non-commutativity in quantum Hall systems, J. Phys. A, 2005, 38(45): 9849
CrossRef
ADS
Google scholar
|
[22] |
Ö. F. Dayi and M. Elbistan, Spin Hall effect in noncommutative coordinates, Phys. Lett. A, 2009, 373(15): 1314
CrossRef
ADS
Google scholar
|
[23] |
K. Ma and S. Dulat, Spin Hall effect on a noncommutative space, Phys. Rev. A, 2011, 84(1): 012104
CrossRef
ADS
Google scholar
|
[24] |
E. Passos, L. R. Ribeiro, C. Furtado, and J. R. Nascimento, Noncommutative Anandan quantum phase, Phys. Rev. A, 2007, 76(1): 012113
CrossRef
ADS
Google scholar
|
[25] |
C. C.Chen, Topological quantum phase and multipole moment of neutral particles, Phys. Rev. A, 1995, 51(3): 2611
CrossRef
ADS
Google scholar
|
[26] |
T. Curtright, D. Fairlie, and C. Zachos, Features of timeindependent Wigner functions, Phys. Rev. D, 1998, 58(2): 025002
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |