Conductivity of carbon-based molecular junctions from ab-initio methods

Xiao-Fei Li, Yi Luo

PDF(783 KB)
PDF(783 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 748-759. DOI: 10.1007/s11467-014-0424-2
REVIEW ARTICLE
REVIEW ARTICLE

Conductivity of carbon-based molecular junctions from ab-initio methods

Author information +
History +

Abstract

Carbon nanomaterials (CNMs) are prompting candidates for next generational electronics. In this review we provide a mini overview of recent results on the conductivity of carbon-based molecular junctions obtained from ab-initio methods. CNMs used as nanoelectrodes and molecular materials in molecular junctions are discussed. The functionalities that include the nanomechanically controlled molecular conductance switches, negative differential resistance devices, and electronic rectifiers realized by using CNMs have been demonstrated.

Graphical abstract

Keywords

carbon nanotubes / graphene / all-carbon nanodevice / quantum transport / ab-initiomolecular dynamics simulations

Cite this article

Download citation ▾
Xiao-Fei Li, Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods. Front. Phys., 2014, 9(6): 748‒759 https://doi.org/10.1007/s11467-014-0424-2

References

[1]
The International Technology Roadmap for Semiconductors, 2011.
[2]
H. Choi and C. C. M. Mody, The long history of molecular electronics: Microelectronics origins of nanotechnology, Soc. Stud. Sci., 2009, 39(1): 11
CrossRef ADS Google scholar
[3]
R. S. Mulliken, Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents, J. Am. Chem. Soc., 1950, 72(1): 600
CrossRef ADS Google scholar
[4]
N. B. Zhitenev, A. Erbe, Z. Bao, W. Jiang, and E. Garfunkel, Molecular nano-junctions formed with different metallic electrodes, Nanotechnology, 2005, 16(4): 495
CrossRef ADS Google scholar
[5]
N. S. Hush, An overview of the first half-century of molecular electronics, Ann. N. Y. Acad. Sci., 2003, 1006(1): 1
CrossRef ADS Google scholar
[6]
T. Li, W. Hu, and D. Zhu, Nanogap electrodes, Adv. Mater., 2010, 22(2): 286
CrossRef ADS Google scholar
[7]
J. J. Parks, A. R. Champagne, G. R. Hutchison, S. Flores-Torres, H. D. Abruña, and D. C. Ralph, Tuning the Kondo effect with a mechanically controllable break junction, Phys. Rev. Lett., 2007, 99: 026601
CrossRef ADS Google scholar
[8]
B. Xu and N. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, 2003, 301(5637): 1221
CrossRef ADS Google scholar
[9]
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 1999, 286(5444): 1550
CrossRef ADS Google scholar
[10]
J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D. C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 2002, 417: 722
CrossRef ADS Google scholar
[11]
C. Z. Li, A. Bogozi, W. Huang, and N. J. Tao, Fabrication of stable metallic nanowires with quantized conductance, Nanotechnology, 1999, 10(2): 221
CrossRef ADS Google scholar
[12]
J. O. Lee, G. Lientschnig, F. Wiertz, M. Struijk, R A J. Janssen, R. Egberink, D. N. Reinhoudt, P. Hadley, and C. Dekker, Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules, Nano Lett., 2003, 3(2): 113
CrossRef ADS Google scholar
[13]
S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjønholm, Singleelectron transistor of a single organic molecule with access to several redox states, Nature, 2003, 425: 698
CrossRef ADS Google scholar
[14]
L. Qin, S. Park, L. Huang, and C. Mirkin, On-wire lithography, Science, 2005, 309(5731): 113
CrossRef ADS Google scholar
[15]
A. Hatzor and P. S. Weiss, Molecular rulers for scaling down nanostructures, Science, 2001, 291(5506): 1019
[16]
R. Krahne, A. Yacoby, H. Shtrikman, I. Bar-Joseph, T. Dadosh, and J. Sperling, Fabrication of nanoscale gaps in integrated circuits, Appl. Phys. Lett., 2002, 81(4): 730
CrossRef ADS Google scholar
[17]
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 1974, 29(2): 277
CrossRef ADS Google scholar
[18]
C. J. Cattena, R. A. Bustos-Marun, and H. M. Pastawski, Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study, Phys. Rev. B, 2010, 82(14): 144201
CrossRef ADS Google scholar
[19]
B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, Chiroptical molecular switches, Chem. Rev., 2000, 100(5): 1789
CrossRef ADS Google scholar
[20]
S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjønholm, Singleelectron transistor of a single organic molecule with access to several redox states, Nature, 2003, 425: 698
CrossRef ADS Google scholar
[21]
J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 1999, 286(5444): 1550
CrossRef ADS Google scholar
[22]
X. Guo, J. P. Small, J. E. Klare, Y. Wang, M. S. Purewal, I. W. Tam, B. H. Hong, R. Caldwell, L. Huang, S. O’Brien, J. Yan, R. Breslow, S. J. Wind, J. Hone, P. Kim, and C. Nuckolls, Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules, Science, 2006, 311(5759): 356
CrossRef ADS Google scholar
[23]
S. Chung, J. B. Parker, M. Bianchet, L. M. Amzel, and J. T. Stivers, Impact of linker strain and flexibility in the design of a fragment-based inhibitor, Nat. Chem. Biol., 2009, 5(6): 407
CrossRef ADS Google scholar
[24]
R. McCreery and A. Bergren, Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication, Adv. Mater., 2009, 21(43): 4303
CrossRef ADS Google scholar
[25]
G. J. Iafrate and M. A. Stroscio, Application of quantumbased devices: Trends and challenges, IEEE Trans. Electron. Dev., 1996, 43(10): 1621
CrossRef ADS Google scholar
[26]
X. F. Li, H. Ren, L. L. Wang, K. Q. Cheng, J. Yang, and Y. Luo, Important structural factors controlling the conductance of DNA pairs in molecular junctions, J. Phys. Chem. C, 2010, 114(33): 14240
CrossRef ADS Google scholar
[27]
M. Q. Long, L. Wang, K. Q. Chen, X. F. Li, B. Zou, and Z. Shuai, Coupling effect on the electronic transport through dimolecular junctions, Phys. Lett. A, 2007, 365(5−6): 489
CrossRef ADS Google scholar
[28]
J. Heath, Molecular electronics, Annu. Rev. Mater. Res., 2009, 39(1): 1
CrossRef ADS Google scholar
[29]
Y. B. Hu, Y. Zhu, H. J. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803
CrossRef ADS Google scholar
[30]
Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun., 2011, 2: 305
CrossRef ADS Google scholar
[31]
N. B. Zhitenev, W. Jiang, A. Erbe, Z. Bao, E. Garfunkel, D. M. Tennant, and R. A. Cirelli, Control of topography, stress and diffusion at molecule–metal interfaces, Nanotechnology, 2006, 17(5): 1272
CrossRef ADS Google scholar
[32]
J. M. Seminario, C. E. De La Cruz, and P. A. Derosa, A theoretical analysis of metal–molecule contacts, J. Am. Chem. Soc., 2001, 123(23): 5616
CrossRef ADS Google scholar
[33]
J. Kushmerick, D. Holt, J. Yang, J. Naciri, M. Moore, and R. Shashidhar, Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory, Phys. Rev. Lett., 2002, 89(8): 086802
CrossRef ADS Google scholar
[34]
A. Bonifas, and R. McCreery, ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition, Nat. Nanotechnol., 2010, 5(8): 612
CrossRef ADS Google scholar
[35]
C.-H. Ko, M.-J. Huang, M.-D. Fu, and C.-H. Chen, Superior contact for single-molecule conductance: Electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au, J. Am. Chem. Soc., 2009, 132: 756
CrossRef ADS Google scholar
[36]
A. K. Patra, S. Singh, B. Barin, Y. Lee, J.-H. Ahn, E. del Barco, E. R. Mucciolo, and B. Özyilmaz, Dynamic spin injection into chemical vapor deposited grapheme, Appl. Phys. Lett., 2012, 101(16): 162407
CrossRef ADS Google scholar
[37]
J. Beebe, B. Kim, C. Frisbie, and J. Kushmerick, Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy, ACS Nano, 2008, 2(5): 827
CrossRef ADS Google scholar
[38]
X. F. Li, Electron and Spin Transport in Graphene-Based Nanodevices, Ph.D. thesis, KTH, Theoretical Chemistry and Biology,2013
[39]
B. Li, X. Cao, H. G. Ong, J. W. Cheah, X. Zhou, Z. Yin, H. Li, J. Wang, F. Boey, W. Huang, and H. Zhang, Allcarbon electronic devices fabricated by directly grown singlewalled carbon nanotubes on reduced graphene oxide electrodes, Adv. Mater., 2010, 22(28): 3058
CrossRef ADS Google scholar
[40]
P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nat. Nanotechnol., 2007, 2(10): 605
CrossRef ADS Google scholar
[41]
D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes, Nat. Commun., 2013, 4: 1374
CrossRef ADS Google scholar
[42]
X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Design of graphene-nanoribbon heterojunctions from first principles, J. Phys. Chem. C, 2011, 115(25): 12616
CrossRef ADS Google scholar
[43]
P. Pomorski, C. Roland, and H. Guo, Quantum transport through short semiconducting nanotubes: A complex band structure analysis, Phys. Rev. B, 2004, 70(11): 115408
CrossRef ADS Google scholar
[44]
S. Frank, P. Poncharal, Z. L.Wang, and W. A. de Heer, Carbon nanotube quantum resistors, Science, 1998, 280(5370): 1744
CrossRef ADS Google scholar
[45]
B. Wei, R. Spolenak, P. Kohler-Redlich, M. Ruhle, and E. Arzt, Electrical transport in pure and boron-doped carbon nanotubes, Appl. Phys. Lett., 1999, 74(21): 3149
CrossRef ADS Google scholar
[46]
V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller, and R. B. Kaner, Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices, ACS Nano, 2012, 6(2): 1395
CrossRef ADS Google scholar
[47]
L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett., 1996, 76(6): 971
CrossRef ADS Google scholar
[48]
Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Carbon nanotube intramolecular junctions, Nature, 1999, 402(6759): 273
CrossRef ADS Google scholar
[49]
W. Lu, G. Ruan, B. Genorio, Y. Zhu, B. Novosel, Z. Peng, and J. M. Tour, Functionalized graphene nanoribbons via anionic polymerization initiated by Alkali metal-intercalated carbon nanotubes, ACS Nano, 2013, 7(3): 2669
CrossRef ADS Google scholar
[50]
X. Guo, A. Gorodetsky, J. Hone, J. Barton, and C. Nuckolls, Conductivity of a single DNA duplex bridging a carbon nanotube gap, Nat. Nanotechnol., 2008, 3(3): 163
CrossRef ADS Google scholar
[51]
X. H. Zhang, X. F. Li, L. L. Wang, L. Xu, and K. W. Luo, Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions, Appl. Phys. Lett., 2014, 104(10): 103107
CrossRef ADS Google scholar
[52]
T. Chen, X. F. Li, L. Wang, K. Luo, Q. Li, X. Zhang, and X. Shang, Perfect spin filter and strong current polarization in carbon atomic chain with asymmetrical connecting points, Europhys. Lett., 2014, 105(5): 57003
CrossRef ADS Google scholar
[53]
A. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture), Angew. Chem. Int. Ed., 2001, 40(14): 2591
CrossRef ADS Google scholar
[54]
Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li, and L. Yu, Development of new semiconducting polymers for high performance solar cells, J. Am. Chem. Soc., 2009, 131(1): 56
CrossRef ADS Google scholar
[55]
C. Cattena, R. Bustos-Marún, and H. Pastawski, Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study, Phys. Rev. B, 2010, 82(14): 144201
CrossRef ADS Google scholar
[56]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348): 56
CrossRef ADS Google scholar
[57]
T. Ebbesen and P. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, 1992, 358(6383): 220
CrossRef ADS Google scholar
[58]
G. Zhong, J. H. Warner, M. Fouquet, A. W. Robertson, B. Chen, and J. Robertson, Growth of ultrahigh density singlewalled carbon nanotube forests by improved catalyst design, ACS Nano, 2012, 6(4): 2893
CrossRef ADS Google scholar
[59]
X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Lett., 2009, 9(9): 3137
CrossRef ADS Google scholar
[60]
K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[61]
A. Geim and K. Novoselov, The rise of graphene, Nat. Mater., 2007, 6(3): 183
CrossRef ADS Google scholar
[62]
Z. Yao, C. L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett., 2000, 84(13): 2941
CrossRef ADS Google scholar
[63]
S. Hong and S. Myung, Nanotube Electronics: A flexible approach to mobility, Nat. Nanotechnol., 2007, 2(4): 207
CrossRef ADS Google scholar
[64]
J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys., 2007, 79(2): 677
CrossRef ADS Google scholar
[65]
X. F. Li, K. Q. Chen, L. Wang, and Y. Luo, Effects of interface roughness on electronic transport properties of nanotube molecule nanotube junctions, J. Phys. Chem. C, 2010, 114(28): 12335
CrossRef ADS Google scholar
[66]
X. F. Li, L. Wang, K. Q. Chen, and Y. Luo, Nanomechanically induced molecular conductance switch, Appl. Phys. Lett., 2009, 95(23): 232118
CrossRef ADS Google scholar
[67]
C. Thiele, H. Vieker, A. Beyer, B. S. Flavel, F. Hennrich, D. Munoz Torres, T. R. Eaton, M. Mayor, M. M. Kappes, A. Golzhauser, H. Löhneysen, and R. Krupke, Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts, Appl. Phys. Lett., 2014, 104(10): 103102
CrossRef ADS Google scholar
[68]
B. J. Alder and T. E. Wainwright, Studies in molecular dynamics (I): General method, J. Chem. Phys., 1959, 31(2): 459
CrossRef ADS Google scholar
[69]
W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys., 2001, 73(1): 33
CrossRef ADS Google scholar
[70]
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, New York: MacMillan, 1982
[71]
W. R. French, C. R. Iacovella, and P. T. Cummings, Largescale atomistic simulations of environmental effects on the formation and properties of molecular junctions, ACS Nano, 2012, 6(3): 2779
CrossRef ADS Google scholar
[72]
R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Berlin: Springer, 1990
CrossRef ADS Google scholar
[73]
W. Koch and M. C. Holthausen, A Chemistry’s Guide to Density Functional Theory, Verlag: Wiley-VCH, 2001
CrossRef ADS Google scholar
[74]
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semi-conductors, New York: Springer-Verlag, 1998
[75]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
CrossRef ADS Google scholar
[76]
M. Brandbyge, J. L. Mozos, P. Ordej’on, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401
CrossRef ADS Google scholar
[77]
Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys., 2002, 281(2−3): 151
CrossRef ADS Google scholar
[78]
J. E. Subotnik, T. Hansen, M. A. Ratner, and A. Nitzan, Nonequilibrium steady state transport via the reduced density matrix operator, J. Chem. Phys., 2009, 130(14): 144105
CrossRef ADS Google scholar
[79]
S. Yeganeh, M. A. Ratner, M. Galperin, and A. Nitzan, Transport in state space: Voltage-dependent conductance calculations of benzene-1,4-dithiol, Nano Lett., 2009, 9(5): 1770
CrossRef ADS Google scholar
[80]
H. Pierson, Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, 1993
[81]
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, 1985, 318(6042): 162
CrossRef ADS Google scholar
[82]
P. Collins and P. Avouris, Nanotubes for electronics, Sci. Am., 2000, 283(6): 62
CrossRef ADS Google scholar
[83]
T. Guo, P. Nikolaev, A. Rinzler, D. Tomanek, D. Colbert, and R. Smalley, Self-assembly of tubular fullerenes, J. Phys. Chem., 1995, 99(27): 10694
CrossRef ADS Google scholar
[84]
T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett., 1995, 243(1−2): 49
CrossRef ADS Google scholar
[85]
N. Inami, M. Ambri Mohamed, E. Shikoh, and A. Fujiwara, Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method, Sci. Technol. Adv. Mater., 2007, 8(4): 292
CrossRef ADS Google scholar
[86]
N. Ishigami, H. Ago, K. Imamoto, M. Tsuji, K. Iakoubovskii, and N. Minami, Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire, J. Am. Chem. Soc., 2008, 130(30): 9918
CrossRef ADS Google scholar
[87]
S. Sen and I. Puri, Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles, Nanotechnology, 2004, 15(3): 264
CrossRef ADS Google scholar
[88]
T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes, Nano Lett., 2009, 9(4): 1497
CrossRef ADS Google scholar
[89]
H. Liu, D. Nishide, T. Tanaka, and H. Kataura, Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography, Nat. Commun., 2011, 2: 309
CrossRef ADS Google scholar
[90]
X. Lu and Z. Chen, Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and singlewalled carbon nanotubes, Chem. Rev., 2005, 105(10): 3643
CrossRef ADS Google scholar
[91]
J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 2006, 312(5776): 1034
CrossRef ADS Google scholar
[92]
X. F. Li, K. Q. Chen, L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices, Appl. Phys. Lett., 2007, 91(13): 133511
CrossRef ADS Google scholar
[93]
X. F. Li, K. Q. Chen, L. L. Wang, M. Q. Long, B. S. Zou, and Z. Shuai, Effect of intertube interaction on the transport properties of a carbon double-nanotube device, J. Appl. Phys., 2007, 101(6): 064514
CrossRef ADS Google scholar
[94]
N. R. Wilson and J. V. Macpherson, Carbon nanotube tips for atomic force microscopy, Nat. Nanotechnol., 2009, 4(8): 483
CrossRef ADS Google scholar
[95]
J. Liu, J. K. Notbohm, R. W. Carpick, and K. T. Turner, Method for characterizing nanoscale wear of atomic force microscope tips, ACS Nano, 2010, 4(7): 3763
CrossRef ADS Google scholar
[96]
K. Meinander, T. N. Jensen, S. B. Simonsen, S. Helveg, and J. V. Lauritsen, Quantification of tip-broadening in noncontact atomic force microscopy with carbon nanotube tips, Nanotechnology, 2012, 23(40): 405705
CrossRef ADS Google scholar
[97]
J. V. Macpherson, Scanning probe microscopy: Taking a closer look at conductivity, Nat. Nanotechnol., 2011, 6(2): 84
CrossRef ADS Google scholar
[98]
Y. Lisunova, I. Levkivskyi, and P. Paruch, Ultrahigh currents in dielectric-coated carbon nanotube probes, Nano Lett., 2013, 13(9): 4527
CrossRef ADS Google scholar
[99]
C. Kranz, Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques, Analyst, 2013, 139(2): 336
CrossRef ADS Google scholar
[100]
F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Low-power switching of phase-change materials with carbon nanotube electrodes, Science, 2011, 332(6029): 568
CrossRef ADS Google scholar
[101]
K. Gong, S. Chakrabarti, and L. Dai, Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall? Angew. Chem. Int. Ed., 2008, 47(29): 5446
CrossRef ADS Google scholar
[102]
M. Del Valle, R. Guti’errez, C. Tejedor, and G. Cuniberti, Tuning the conductance of a molecular switch, Nat. Nanotechnol., 2007, 2(3): 176
CrossRef ADS Google scholar
[103]
G. Wang, Y. Kim, M. Choe, T. W. Kim, and T. Lee, A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., 2011, 23(6): 755
CrossRef ADS Google scholar
[104]
K. Y. Lian, Y. F. Ji, X. F. Li, M. X. Jin, D. J. Ding, and Y. Luo, Big bandgap in highly reduced graphene oxides, J. Phys. Chem. C, 2013, 117: 6049
CrossRef ADS Google scholar
[105]
T. Chen, X. F. Li, L. L. Wang, Q. Li, K. W. Luo, X. H. Zhang, and L. Xu, Semiconductor to metal transition by tuning the location of N2AA in armchair graphene nanoribbons, J. Appl. Phys., 2014, 115(5): 053707
CrossRef ADS Google scholar
[106]
X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Tuning the electronic transport properties of zigzag graphene nanoribbons via hydrogenation separators, J. Phys. Chem. C, 2011, 115(49): 24366
CrossRef ADS Google scholar
[107]
X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions, J. Phys.: Condens. Matter, 2012, 24(9): 095801
CrossRef ADS Google scholar
[108]
R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater., 2010, 9(4): 315
CrossRef ADS Google scholar
[109]
H. J. Xiang, E. J. Kan, S. H. Wei, X. G. Gong, and M. H. Whangbo, Thermodynamically stable single-side hydrogenated graphene, Phys. Rev. B, 2010, 82(16): 165425
CrossRef ADS Google scholar
[110]
H. L. Gao, L. Wang, J. J. Zhao, F. Ding, and J. P. Lu, Band gap tuning of hydrogenated graphene: H coverage and configuration dependence, J. Phys. Chem. C, 2011, 115(8): 3236
CrossRef ADS Google scholar
[111]
X. F. Li, L. L. Wang, K. Q. Chen, and Y. Luo, Strong current polarization and negative differential resistance in chiral graphene nanoribbons with reconstructed (2,1)-edges, Appl. Phys. Lett., 2012, 101(7): 073101
CrossRef ADS Google scholar
[112]
Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fan, Vacuumbreakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications, Nano Lett., 2007, 7(12): 3792
CrossRef ADS Google scholar
[113]
J. Huang, S. Chen, Z. Ren, Z. Wang, K. Kempa, M. Naughton, G. Chen, and M. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures, Phys. Rev. Lett., 2007, 98(18): 185501
CrossRef ADS Google scholar
[114]
S. Barraza-Lopez, M. Vanevi’c, M. Kindermann, and M. Y. Chou, Effects of metallic contacts on electron transport through graphene, Phys. Rev. Lett., 2010, 104(7): 076807
CrossRef ADS Google scholar
[115]
R. Addou, A. Dahal, and M. Batzill, Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene, Nat. Nanotechnol., 2012, 8(1): 41
CrossRef ADS Google scholar
[116]
F. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, The origins and limits of metal–grapheme junction resistance, Nat. Nanotechnol., 2011, 6: 179
CrossRef ADS Google scholar
[117]
O. Yazyev and S. Louie, Electronic transport in polycrystalline graphene, Nat. Mater., 2010, 9(10): 806
CrossRef ADS Google scholar
[118]
J. Zhou, T. Hu, J. Dong, and Y. Kawazoe, Ferromagnetism in a graphene nanoribbon with grain boundary defects, Phys. Rev. B, 2012, 86(3): 035434
CrossRef ADS Google scholar
[119]
A. R. Botello-Méndez, E. Cruz-Silva, F. Lopez-Urias, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in Hybrid graphene nanoribbons using 57 defects, ACS Nano, 2009, 3(11): 3606
CrossRef ADS Google scholar
[120]
K. Y. Lian, X. F. Li, S. Duan, M. X. Jin, D. J. Ding, and Y. Luo, Tuning electronic and magnetic properties of armchair|zigzag hybrid graphene nanoribbons by the choice of supercell model of grain boundaries, J. Appl. Phys., 2014, 115(10): 104303
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(783 KB)

Accesses

Citations

Detail

Sections
Recommended

/