PDF
(974KB)
Abstract
Currently, the nature of self-assembly of three-dimensional epitaxial islands or quantum dots (QDs) in a lattice-mismatched heteroepitaxial growth system, such as InAs/GaAs(001) and Ge/Si(001) as fabricated by molecular beam epitaxy (MBE), is still puzzling. The purpose of this article is to discuss how the self-assembly of InAs QDs in MBE InAs/GaAs(001) should be properly understood in atomic scale. First, the conventional kinetic theories that have traditionally been used to interpret QD self-assembly in heteroepitaxial growth with a significant lattice mismatch are reviewed briefly by examining the literature of the past two decades. Second, based on their own experimental data, the authors point out that InAs QD self-assembly can proceed in distinctly different kinetic ways depending on the growth conditions and so cannot be framed within a universal kinetic theory, and, furthermore, that the process may be transient, or the time required for a QD to grow to maturity may be significantly short, which is obviously inconsistent with conventional kinetic theories. Third, the authors point out that, in all of these conventional theories, two well-established experimental observations have been overlooked: i) A large number of “floating” indium atoms are present on the growing surface in MBE InAs/GaAs(001); ii) an elastically strained InAs film on the GaAs(001) substrate should be mechanically unstable. These two well-established experimental facts may be highly relevant and should be taken into account in interpreting InAs QD formation. Finally, the authors speculate that the formation of an InAs QD is more likely to be a collective event involving a large number of both indium and arsenic atoms simultaneously or, alternatively, a morphological/structural transformation in which a single atomic InAs sheet is transformed into a three-dimensional InAs island, accompanied by the rehybridization from the sp2-bonded to sp3- bonded atomic configuration of both indium and arsenic elements in the heteroepitaxial growth system.
Graphical abstract
Keywords
molecular beam epitaxy
/
InAs quantum dots
Cite this article
Download citation ▾
Ju Wu, Peng Jin.
Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy.
Front. Phys., 2015, 10(1): 108101 DOI:10.1007/s11467-014-0422-4
| [1] |
F. C. Frank and J. H. van der Merwe, One-dimensional dislocations (I): Static theory, Proc. R. Soc. Lond. A198(1053), 205 (1949)
|
| [2] |
D. Pan, E. Towe, and S. Kennerly, A five-period normalincidence (In, Ga)As/GaAs quantum-dot infrared photodetector, Appl. Phys. Lett.75(18), 2719 (1999)
|
| [3] |
Z. Ye, J. C. Campbell, Z. Chen, E.T. Kim, and A. Madhukar, Voltage-controllable multiwavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection, J. Appl. Phys.92(7), 4141(2002)
|
| [4] |
H. C. Liu, B. Aslan, J. A. Gupta, Z. R. Wasilewski, G. C. Aers, A. J. SpringThorpe, and M. Buchanan, Quantum dots for terahertz generation, J. Phys.: Condens. Matter20(38), 384211 (2008)
|
| [5] |
N. S. Daghestani, M. A. Cataluna, G. Berry, G. Ross, and M. J. Rose, Terahertz emission from InAs/GaAs quantum dot based photoconductive devices, Appl. Phys. Lett.98(18),181107 (2011)
|
| [6] |
G. Shan, X. Zhao, M. Hu, C. H. Shek, and W. Huang, Vertical-external-cavity surface-emitting lasers and quantum dot lasers, Front. Optoelectron.5(2), 157 (2012)
|
| [7] |
G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys.9(2), 170 (2014)
|
| [8] |
D. J. Eaglesham and M. Cerullo, Dislocation-free StranskiKrastanow growth of Ge on Si(100), Phys. Rev. Lett.64(16), 1943 (1990)
|
| [9] |
Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett.65(8), 1020 (1990)
|
| [10] |
C. W. Snyder, B. G. Orr, D. Kessler, and L. M. Sander, Effect of strain on surface morphology in highly strained InGaAs films, Phys. Rev. Lett.66(23), 3032 (1991)
|
| [11] |
D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett.63(23), 3203 (1993)
|
| [12] |
J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André, and O. Vatel, Self-organized growth of regular nanometerscale InAs dots on GaAs, Appl. Phys. Lett.64(2),196 (1994)
|
| [13] |
D. Leonard, K. Pond, and P. M. Petroff, Critical layer thickness for self-assembled InAs islands on GaAs, Phys. Rev. B50(16), 11687 (1994)
|
| [14] |
A. Zolotaryov, A. Schramm, Ch. Heyn, and W. Hansen, InAs-coverage dependence of self-assembled quantum dot size, composition, and density, Appl. Phys. Lett.91(8), 083107 (2007)
|
| [15] |
J. Wu, Y. H. Jiao, P. Jin, X. J. Lv, and Z. G. Wang, Effect of the growth mode on the two- to three-dimensional transition of InAs grown on vicinal GaAs(001) substrates, Nanotechnology18(26), 265304 (2007)
|
| [16] |
J. Wu, Y. P. Zeng, B. Q. Wang, J. Peng, and Z. G. Wang, Self-Assembling of InAs Quantum Dots on GaAs(001) in Molecular Beam Epitaxy Advances in Nanotechnology, edited by E. J. Chen and N. Peng, Nova Science Publishers, 2009, Vol. 1, pp 209−222
|
| [17] |
J. Wu, Y. P. Zeng, B. Q. Wang, Z. P. Zhu, and Z. G. Wang, Growth of MBE InAs/GaAs(001) quantum dots by the rapid rate, Micronanoelectronic Technology46, 79 (2009) (in Chinese)
|
| [18] |
F. Grosse and M. F. Gyure, Island and step morphology in InAs(001) homoepitaxy, Phys. Status Solidi(b) 234(1), 338 (2002)
|
| [19] |
M. Takahasi and J. Mizuki, X-ray diffraction study on selforganization of InAs islands on GaAs(001), J. Phys. Conf. Ser.83, 012006 (2007)
|
| [20] |
H. Metiu, Building regulations, Nature366(6451), 111 (1993)
|
| [21] |
Z. Zhang and M. G. Lagally, Atomistic processes in the early stages of thin-film growth, Science276(5311), 377 (1997)
|
| [22] |
J. V. Barth, G. Costantini, and K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature437(7059), 671 (2005)
|
| [23] |
J. A. Venables, Nucleation growth and pattern formation in heteroepitaxy, Physica A239(1−3), 35 (1997)
|
| [24] |
A. K. Bhuiyan, S. K. Dew, and M. Stepanova, Controlled self-assembly of nanocrystalline arrays studied by 3D kinetic Monte Carlo modeling, J. Phys. Chem. C115(40), 19557 (2011)
|
| [25] |
A. Madhukar, A unified atomistic and kinetic framework for growth front morphology evolution and defect initiation in strained epitaxy, J. Cryst. Growth163(1−2), 149 (1996)
|
| [26] |
D. D. Vvedensky, Epitaxial phenomena across length and time scales, Surf. Interface Anal.31(7), 627 (2001)
|
| [27] |
A. Voigt(Ed.), Multiscale Modeling in Epitaxial Growth, Birkhauser, 2005
|
| [28] |
T. Tiedje and A. Ballestad, Atomistic basis for continuum growth equation: Description of morphological evolution of GaAs during molecular beam epitaxy, Thin Solid Films516(12), 3705 (2008)
|
| [29] |
A. Y. Cho, Film deposition by molecular-beam techniques, J. Vac. Sci. Technol.8(5), S31 (1971)
|
| [30] |
M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Sudijono, L. Sander, and B. Orr, Stable and unstable growth in molecular beam epitaxy, Phys. Rev. Lett.72(1), 116 (1994)
|
| [31] |
C. Orme, M. D. Johnson, K. T. Leung, B. G. Orr, P. Smilauer, and D. Vvedensky, Studies of large scale unstable growth formed during GaAs(001) homoepitaxy, J. Cryst. Growth150, 128 (1995)
|
| [32] |
C. Orme, M. D. Johnson, J. L. Sudijono, K. T. Leung, and B. G. Orr, Large scale surface structure formed during GaAs (001) homoepitaxy, Appl. Phys. Lett.64(7), 860 (1994)
|
| [33] |
S. Martini, A. A. Quivy, T. E. Lamas, M. J. da Silva, E. C. F. da Silva, and J. R. Leite, Influence of indium segregation on the RHEED oscillations during the growth of InGaAs layers on a GaAs(001) surface, J. Cryst. Growth251(1−4), 101 (2003)
|
| [34] |
S. Martini, A. A. Quivy, T. E. Lamas, and E. da Silva, Realtime RHEED investigation of indium segregation in InGaAs layers grown on vicinal GaAs(001) substrates, Phys. Rev. B72(15), 153304 (2005)
|
| [35] |
R. J. Asaro and W. A. Tiller, Interface morphology development during stress corrosion cracking (Part I): Via surface diffusion, Metall. Trans.3(7), 1789 (1972)
|
| [36] |
M. A. Grinfeld, Instability of the Separation Boundary between a Nonhydrostatically Stressed Elastic Body and a Melt, Dokl. Akad. Nauk. SSSR290(6), 1358 (1986)
|
| [37] |
D. J. Srolovitz, On the stability of surfaces of stressed solids, Acta Metall.37(2), 621 (1989)
|
| [38] |
H. Gao and D. M. Nix, Surface roughening of heteroepitaxial thin films, Annu. Rev. Mater. Sci.29(1), 173 (1999)
|
| [39] |
B. J. Spencer and J. Tersoff, Equilibrium shapes and properties of epitaxially strained islands, Phys. Rev. Lett.79(24), 4858 (1997)
|
| [40] |
C. D. Rudin and B. J. Spencer, Equilibrium island ridge arrays in strained solid films, J. Appl. Phys.86(10), 5530 (1999)
|
| [41] |
W. T. Tekalign and B. J. Spencer, Evolution equation for a thin epitaxial film on a deformable substrate, J. Appl. Phys.96(10), 5505 (2004)
|
| [42] |
J. N. Aqua, T. Frisch, and A. Verga, Nonlinear evolution of a morphological instability in a strained epitaxial film, Phys. Rev. B76(16), 165319 (2007)
|
| [43] |
B. J. Spencer, P. W. Voorhees, and S. H. Davis, Morphological instability in epitaxially strained dislocation-free solid films: Linear stability theory, J. Appl. Phys.73(10), 4955 (1993)
|
| [44] |
J. E. Guyer and P. W. Voorhees, Morphological stability of alloy thin films, Phys. Rev. B54, 11710 (1996)
|
| [45] |
C. H. Chiu, The self-assembly of uniform heteroepitaxial islands, Appl. Phys. Lett.75(22), 3473 (1999)
|
| [46] |
C. H. Chiu and Z. Huang, Numerical simulation for the formation of nanostructures on the Stranski–Krastanow systems by surface undulation, J. Appl. Phys.101(11), 113540 (2007)
|
| [47] |
M. Levine, A. Golovin, S. Davis, and P. Voorhees, Selfassembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Phys. Rev. B75(20), 205312 (2007)
|
| [48] |
Y. W. Zhang, Self-organization, shape transition, and stability of epitaxially strained islands, Phys. Rev. B61(15), 10388 (2000)
|
| [49] |
J.Müller and M. Grant, Model of surface instabilities induced by stress, Phys. Rev. Lett.82(8), 1736 (1999)
|
| [50] |
Z. Suo and Z. Zhang, Epitaxial films stabilized by long-range forces, Phys. Rev. B58(8), 5116 (1998)
|
| [51] |
P. Liu, Y. W. Zhang, and C. Lu, Coarsening kinetics of heteroepitaxial islands in nucleationless Stranski–Krastanov growth, Phys. Rev. B68(3), 035402 (2003)
|
| [52] |
J. N. Aqua, and T. Frisch, Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B82(8), 085322 (2010)
|
| [53] |
S. P. A. Gill, An analytical model for the growth of quantum dots on ultrathin substrates, Appl. Phys. Lett.98(16), 161910 (2011)
|
| [54] |
M. Khenner, W. T. Tekalign, and M. S. Levine, Stability of a strongly anisotropic thin epitaxial film in a wetting interaction with elastic substrate, Europhys. Lett.93(2), 26001 (2011)
|
| [55] |
Y. W. Zhang and A. F. Bower, Three-dimensional analysis of shape transitions in strained-heteroepitaxial islands, Appl. Phys. Lett.78(18), 2706 (2001)
|
| [56] |
F. Long, S. P. A. Gill, and A. C. Cocks, Effect of surfaceenergy anisotropy on the kinetics of quantum dot formation, Phys. Rev. B64(12), 121307 (2001)
|
| [57] |
M. D. Korzec and P. L. Evans, From bell shapes to pyramids: A reduced continuum model for self-assembled quantum dot growth, Physica D239(8), 465 (2010)
|
| [58] |
C. H. Chiu, Stable and uniform arrays of self-assembled nanocrystalline islands, Phys. Rev. B69(16), 165413 (2004)
|
| [59] |
C. Herring, Effect of change of scale on sintering phenomena, J. Appl. Phys.21(4), 301 (1950)
|
| [60] |
W. W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28, 333 (1957)
|
| [61] |
J. W. Gibbs, The Collected Works, Thermodynamics Vol. 1, New York: Longmans Green, 1928
|
| [62] |
J. W. P. Schmelzer, On the determination of the kinetic prefactor in classical nucleation theory, J. Non-Cryst. Solids356(52−54): 2901 (2010)
|
| [63] |
B.V. Derjaguin, Theory of homogeneous condensation upon moderate supersaturation, Progress in Surface Science45(1−4), 1 (1994)
|
| [64] |
D. Kashchiev, Nucleation: Basic Theory with Applications, Oxford: Butterworth Heinemann, 2000
|
| [65] |
S. A. Kukushkin and A. V. Osipov, New phase formation on solid surfaces and thin film condensation, Prog. Surf. Sci.51(1), 1 (1996)
|
| [66] |
T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Metastable states of surface nanostructure arrays studied using a Fokker–Planck equation, Phys. Rev. B75(8), 085422 (2007)
|
| [67] |
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids19(1−2), 35 (1961)
|
| [68] |
C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung) [Theory of the aging of precipitates by dissolution-reprecipitation (Ostwald ripening)], Zeitschrift für Elektrochemie65(7−8), 581 (1961)
|
| [69] |
A. V. Osipov, S. A. Kukushkin, F. Schmitt, and P. Hess, Kinetic model of coherent island formation in the case of self-limiting growth, Phys. Rev. B64(20), 205421 (2001)
|
| [70] |
A. V. Osipov, F. Schmitt, S. A. Kukushkin, and P. Hess, Stress-driven nucleation of coherent islands: Theory and experiment, Appl. Surf. Sci.188(1−2), 156 (2002)
|
| [71] |
V. G. Dubrovskii, G. E. Cirlin, and V. W. Ustinov, Kinetics of the initial stage of coherent island formation in heteroepitaxial systems, Phys. Rev. B68(7), 075409 (2003)
|
| [72] |
V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, Effect of growth kinetics on the structural and optical properties of quantum dot ensembles, J. Cryst. Growth267(1−2), 47 (2004)
|
| [73] |
V. G. Dubrovskii, Calculation of the size-distribution function for quantum dots at the kinetic stage of growth, Semiconductors40(10), 1123 (2006)
|
| [74] |
J. Tersoff and F. K. LeGoues, Competing relaxation mechanisms in strained layers, Phys. Rev. Lett.72, 3570 (1994)
|
| [75] |
T. Hanada, H. Totsuka, S. K. Hong, K. Godo, K. Miyajima, T. Goto, and T. Yao, Slowdown in development of self-assembled InAs/GaAs(001) dots near the critical thickness, J. Vac. Sci. Technol. B24(4), 1886 (2006)
|
| [76] |
A. L. Giermann and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Appl. Phys. Lett.86(12), 121903 (2005)
|
| [77] |
D. T. Danielson, D. K. Sparacin, J. Michel, and L. C. Kimerling, Surface-energy-driven dewetting theory of silicon-oninsulator agglomeration, J. Appl. Phys.100(8), 083507 (2006)
|
| [78] |
E. Bussmann, F. Cheynis, F. Leroy, P. Müller, and O. PierreLouis, Dynamics of solid thin-film dewetting in the siliconon-insulator system, New J. Phys.13(4), 043017 (2011)
|
| [79] |
D. Wang and P. Schaaf, Solid-state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying, Phys. Status Solidi A210(8), 1544 (2013)
|
| [80] |
F. Ruffino and M. G. Grimaldi, Dewetting of templateconfined Au films on SiC surface: From patterned films to patterned arrays of nanoparticles, Vacuum99, 28 (2014)
|
| [81] |
H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, and W. Seifert, Mean-field theory of quantum dot formation, Phys. Rev. Lett.79(5), 897 (1997)
|
| [82] |
Y. Chen and J. Washburn, Structural transition in largelattice-mismatch heteroepitaxy, Phys. Rev. Lett.77(19), 4046 (1996)
|
| [83] |
F. M. Ross, J. Tersoff, and R. M. Tromp, Coarsening of selfassembled Ge quantum dots on Si (001), Phys. Rev. Lett.80(5), 984 (1998)
|
| [84] |
H. M. Koduvely and A. Zangwill, Epitaxial growth kinetics with interacting coherent islands, Phys. Rev. Lett.60(4), R2204 (1999)
|
| [85] |
D. E. Jesson, T. P. Munt, V. A. Shchcukin, and D. Bimberg, Tunable metastability of surface nanostructure arrays, Phys. Rev. Lett.92(11), 115503 (2004)
|
| [86] |
Y. Enomoto and M. Sawa, Simulation study on nanocluster growth deposited on a substrate, Physica A331(1−2), 189 (2004)
|
| [87] |
M. Fanfoni and M. Tomellini, Film growth viewed as stochastic dot processes, J. Phys.: Condens. Matter17(17), R571 (2005)
|
| [88] |
H. Z. Song, T. Usuki, Y. Nakata, N. Yokoyama, H. Sasakura, and S. Muto, Formation of InAs/GaAs quantum dots from a subcritical InAs wetting layer: A reflection high-energy electron diffraction and theoretical study, Phys. Rev. B73(11), 115327 (2006)
|
| [89] |
M. Fanfoni, E. Placidi, F. Arciprete, E. Orsini, F. Patella, and A. Balzarotti, Sudden nucleation versus scale invariance of InAs quantum dots on GaAs, Phys. Rev. B75(24), 245312 (2007)
|
| [90] |
K. A. Nevalainen, M. Rusanen, and I. T. Koponen, Size selected growth of nanodots: Effects of growth kinetics and energetics on the formation of stationary size distributions, Eur. Phys. J. B56(4), 311 (2007)
|
| [91] |
F. Ratto and F. Rosei, Order and disorder in the heteroepitaxy of semiconductor nanostructures, Mater. Sci. Eng. Rep.70(3−6), 243 (2010)
|
| [92] |
Ch. Heyn, Critical coverage for strain-induced formation of InAs quantum dots, Phys. Rev. B64(16), 165306 (2001)
|
| [93] |
J. A. Venables, G. D. T.Spiller, and M. Hanbuchen, Nucleation and growth of thin films, Rep. Prog. Phys.47(4), 399 (1984)
|
| [94] |
M. Itoh, Atomic-scale homoepitaxial growth simulations of reconstructed III–V surfaces, Prog. Surf. Sci.66(3−5), 53 (2001)
|
| [95] |
J. W. Evans, P. A. Thiel, and M. C. Bartelt, Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds, Surf. Sci. Rep.61(1−2), 1 (2006)
|
| [96] |
G. S. Bales and D. C. Chrzan, Dynamics of irreversible island growth during submonolayer epitaxy, Phys. Rev. B50(9), 6057 (1994)
|
| [97] |
M. Körner, M. Einax, and P. Maass, Island size distributions in submonolayer growth: Prediction by mean field theory with coverage dependent capture number, Phys. Rev. B82(20), 201401(R) (2010)
|
| [98] |
M. Körner, M. Einax, and P. Maass, Capture numbers and island size distributions in models of submonolayer surface growth, Phys. Rev. B86(8), 085403 (2012)
|
| [99] |
J. G. Amar, F. Family, and P. M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B50(12), 8781 (1994)
|
| [100] |
D. R. Frankl and J. A. Venables, Nucleation on substrates from the vapour phase, Adv. Phys.19(80), 409 (1970)
|
| [101] |
T. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett.47(19), 1400 (1981)
|
| [102] |
P. Meakin, Formation of fractal clusters and networks by irreversible diffusion-limited aggregation, Phys. Rev. Lett.51(13), 1119 (1983)
|
| [103] |
M. Kolb, R. Botet, and R. Jullien, Scaling of kinetically growing clusters, Phys. Rev. Lett.51(13), 1123 (1983)
|
| [104] |
A. Y. Menshutin and L. N. Shchur, Morphological diagram of diffusion driven aggregate growth in plane: Competition of anisotropy and adhesion, Comput. Phys. Commun.182(9), 1819 (2011)
|
| [105] |
Z. Rácz and T. Vicsek, Diffusion-controlled deposition: Cluster statistics and scaling, Phys. Rev. Lett.51(26), 2382 (1983)
|
| [106] |
T. Vicsek and F. Family, Dynamic scaling for aggregation of clusters, Phys. Rev. Lett.52(19), 1669 (1983)
|
| [107] |
W. W. Mullins, The statistical self-similarity hypothesis in grain growth and particle coarsening, J. Appl. Phys.59(4), 1341 (1986)
|
| [108] |
F. Family and P. Meakin, Scaling of the droplet-size distribution in vapor-deposited thin films, Phys. Rev. Lett.61(4), 428 (1988)
|
| [109] |
F. Family and P. Meakin, Kinetics of droplet growth processes: Simulations, theory, and experiments, Phys. Rev. A40(7), 3836 (1989)
|
| [110] |
M. Zinke-Allmang, L. C. Feldman, and W. van Saarloos, Experimental study of self-similarity in the coalescence growth regime, Phys. Rev. Lett.68(15), 2358 (1992)
|
| [111] |
J. G. Amar, F. Family, and P. M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B50(12), 8781 (1994)
|
| [112] |
J. G. Amar and F. Family, Kinetics of submonolayer and multilayer epitaxial growth, Thin Solid Films272(2), 208(1996)
|
| [113] |
J. W. Evans and M. C. Bartelt, Nucleation, adatom capture, and island size distributions: Unified scaling analysis for submonolayer deposition, Phys. Rev. B63(23), 235408 (2001)
|
| [114] |
J. W. Evans and M. C. Bartelt, Island sizes and capture zone areas in submonolayer deposition: Scaling and factorization of the joint probability distribution, Phys. Rev. B66(23), 235410 (2002)
|
| [115] |
J. A. Stroscio and D. T. Pierce, Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy, Phys. Rev. B49(12), 8522 (1994)
|
| [116] |
V. Bressler-Hill, S. Varma, A. Lorke, B. Z. Nosho, P. Petroff, and W. Weinberg, Island scaling in strained heteroepitaxy: InAs/GaAs(001), Phys. Rev. Lett.74(16), 3209 (1995)
|
| [117] |
G. R . Bell, T. J. Krzyzewski, P. B. Joyce, and T. S. Jones, Island size scaling for submonolayer growth of InAs on GaAs (001)- (2×4): Strain and surface reconstruction effects, Phys. Rev. B61(16), R10551 (2000)
|
| [118] |
C. Ratsch, A. Zangwill, P. Smilauer, and D. D. Vvedensky, Saturation and scaling of epitaxial island densities, Phys. Rev. Lett.72(20), 3194 (1994)
|
| [119] |
J. G. Amar and F. Family, Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth, Phys. Rev. Lett.74(11), 2066 (1995)
|
| [120] |
P. A. Mulheran and J. A. Blackman, The origins of island size scaling in heterogeneous film growth, Philos. Mag. Lett.72(1), 55 (1995)
|
| [121] |
P. A. Mulheran and J. A. Blackman, Capture zones and scaling in homogeneous thin-film growth, Phys. Rev. B53(15), 10261 (1996)
|
| [122] |
F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. Kulkarni, S. Heun, and F. Rosei, Diffusion dynamics during the nucleation and growth of Ge/Si nanostructures on Si(111), Phys. Rev. Lett.96(9), 096103 (2006)
|
| [123] |
G. S. Solomon, J. A. Trezza, and J. S. Harris, Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs, Appl. Phys. Lett.66(8), 991 (1995)
|
| [124] |
R. Leon, T. J. Senden, Y. Kim, C. Jagadish, and A. Clark, Nucleation transitions for InGaAs islands on vicinal (100) GaAs, Phys. Rev. Lett.78(26), 4942 (1997)
|
| [125] |
K. Shiramine, T. Itoh, and S. Muto, Critical cluster size of InAs quantum dots formed by Stranski–Krastanow mode, J. Vac. Sci. Technol. B22(2), 642 (2004)
|
| [126] |
F. Arciprete, E. Placidi, V. Sessi, M. Fanfoni, F. Patella, and A. Balzarotti, How kinetics drives the two- to three-dimensional transition in semiconductor strained heterostructures: The case of InAs/GaAs(001), Appl. Phys. Lett.89(4), 041904 (2006)
|
| [127] |
Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, and N. Yokoyama, Island size scaling in InAs/GaAs self-assembled quantum dots, Phys. Rev. Lett.80(12), 2650 (1998)
|
| [128] |
T. J. Krzyzewski, P. B. Joyce, G. R. Bell, and T. S. Jones, Understanding the growth mode transition in InAs/GaAs(001) quantum dot formation, Surf. Sci.532−535, 822 (2003)
|
| [129] |
T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Manipulating the size distributions of quantum dots associated with strain-renormalized surface energy, Appl. Phys. Lett.85(10), 1784(2004)
|
| [130] |
K. Pirkkalainen, K. A. Riekki, and I. T. Koponen, Two computational methods for describing size selected nanocluster growth and obtaining accurate cluster size distributions, Comput. Mater. Sci.43(2), 325 (2008)
|
| [131] |
K. Pirkkalainen, K. A. Nevalainen, and I. T. Koponen, Computational methods for mesoscopic modelling of sizeselection in nanoisland growth, J. Phys.: Conf. Ser.100(7), 072004 (2008)
|
| [132] |
K. A. Riekki, Size selected growth of nanodots: Analytical prediction for the selected size, Eur. Phys. J. B85(6), 185, 2012
|
| [133] |
G. S. Bales and A. Zangwill, Self-consistent rate theory of submonolayer homoepitaxy with attachment/detachment kinetics, Phys. Rev. B55(4), R1973 (1997)
|
| [134] |
H. A. Atwater and C. M. Yang, Island growth and coarsening in thin films — conservative and nonconservative systems, J. Appl. Phys.67(10), 6202 (1990)
|
| [135] |
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, Cambridge: Cambridge University Press, 1992
|
| [136] |
J. W. Christian, The Theory of Transformations in Metals and Alloys, Part I, New York: Pergamon Press, 2002
|
| [137] |
E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Oxford: Butterworth-Heinemann, 1981
|
| [138] |
T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Manipulating the size distributions of quantum dots associated with strain-renormalized surface energy, Appl. Phys. Lett.85(10), 1784 (2004)
|
| [139] |
D. J. Vine, D. E. Jesson, M. J. Morgan, V. Shchukin, and D. Bimberg, Shape transitions of metastable surface nanostructures, Phys. Rev. B72(24), 241304 (2005)
|
| [140] |
R. Bergamaschini, M. Brehm, M. Grydlik, T. Fromherz, G. Bauer, and F. Montalenti, Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001), Nanotechnology22(28), 285704 (2011)
|
| [141] |
C. Misbah, O. Pierre-Louis, and Y. Saito, Crystal surfaces in and out of equilibrium: A modern view, Rev. Mod. Phys.82(1), 981, (2010)
|
| [142] |
T. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett.47(19), 1400 (1981)
|
| [143] |
G. H. Gilmer, M. H. Grabow, and A. F. Bakker, Modeling of epitaxial growth, Mater. Sci. Eng. B6(2−3), 101 (1990)
|
| [144] |
D. D. Vvedensky, Epitaxial phenomena across length and time scales, Surf. Interface Anal.31(7), 627 (2001)
|
| [145] |
R. E. Caflisch, Growth, structure and pattern formation for thin films, J. Sci. Comput.37(1), 3 (2008)
|
| [146] |
K. Pirkkalainen and I. T. Koponen, Computational study on tuning the 2D self-assembly of metallic nanoclusters, Surf. Sci.604(11−12), 951 (2010)
|
| [147] |
B. A. Joyce and D. D. Vvedensky, Self-organized growth on GaAs surfaces, Mater. Sci. Eng. Rep.46(6), 127 (2004)
|
| [148] |
P. P. Petrov and W. Miller, Fast kinetic Monte Carlo simulation and statistics of quantum dot arrays, Surf. Sci.621, 175 (2014)
|
| [149] |
E. Schöll and B. Bose, Kinetic Monte Carlo simulation of the nucleation stage of the self-organized growth of quantum dots, Solid-State Electron.42(7−8), 1587 (1998)
|
| [150] |
G. Russo and P. Smereka, Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo, J. Comput. Phys.214(2), 809 (2006)
|
| [151] |
T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Solids57(3), 521 (2009)
|
| [152] |
B. G. Orr, D. A. Kessler, C. W. Snyder, and L. M. Sander, A model for strain-induced roughening and coherent island growth, Europhys. Lett.19(1), 33 (1992)
|
| [153] |
C. H. Lam, C. K. Lee, and L. M. Sander, Competing roughening mechanisms in strained heteroepitaxy: A fast kinetic Monte Carlo study, Phys. Rev. Lett.89(21), 216102 (2002)
|
| [154] |
M. T. Lung, C. H. Lam, and L. M. Sander, Island, pit, and groove formation in strained heteroepitaxy, Phys. Rev. Lett.95(8), 086102 (2005)
|
| [155] |
T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Solids57(3), 521 (2009)
|
| [156] |
F. Much and M. Biehl, Simulation of wetting-layer and island formation in heteroepitaxial growth, Europhys. Lett.63, 14 (2003)
|
| [157] |
J. Y. Guo, Y. W. Zhang, and C. Lu, Effects of wetting and misfit strain on the pattern formation of heteroepitaxially grown thin films, Comput. Mater. Sci.44(1), 174 (2008)
|
| [158] |
P. Gaillard, J. N. Aqua, and T. Frisch, Kinetic Monte Carlo simulations of the growth of silicon germanium pyramids, Phys. Rev. B87(12), 125310 (2013)
|
| [159] |
G. Russo and P. Smereka, Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo, J. Comput. Phys.214(2), 809 (2006)
|
| [160] |
J. N. Aqua and T. Frisch, Elastic interactions and kinetics during reversible submonolayer growth: Monte Carlo simulations, Phys. Rev. B78(12), 121305 (2008)
|
| [161] |
R. Stumpf and M. Scheffler, Theory of self-diffusion at and growth of Al(111), Phys. Rev. Lett.72(2), 254 (1994)
|
| [162] |
R. Stumpf and M. Scheffler, Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of Al and their implications on crystal growth, Phys. Rev. B53(8), 4958 (1996)
|
| [163] |
B. D. Yu and M. Scheffler, Anisotropy of growth of the closepacked surfaces of silver, Phys. Rev. Lett.77(6), 1095 (1996)
|
| [164] |
A. Bogicevic, J. Strömquist, and B. Lundqvist, Lowsymmetry diffusion barriers in homoepitaxial growth of Al(111), Phys. Rev. Lett.81(3), 637 (1998)
|
| [165] |
A. La Magna, Nanoisland shape relaxation mechanism, Surf. Sci.601(2), 308 (2007)
|
| [166] |
K. Thürmer, J. E. Reutt-Robey, and E. D. Williams, Nucleation limited crystal shape transformations, Surf. Sci.537(1−3), 123 (2003)
|
| [167] |
C. Herring, in: Structure and Properties of Solid Surfaces, edited by R. Gomer and C. S. Smith, Chicago: The University of Chicago Press, 1952, pp 5−81
|
| [168] |
W. W. Mullins and G. S. Rohrer, Nucleation barrier for volume-conserving shape changes of faceted crystals, J. Am. Ceram. Soc.83(1), 214 (2000)
|
| [169] |
G. S. Rohrer, C. L. Rohrer, and W. W. Mullins, Nucleation energy barriers for volume-conserving shape changes of crystals with nonequilibrium morphologies, J. Am. Ceram. Soc.84(9), 2099 (2001)
|
| [170] |
N. Combe, P. Jensen, and A. Pimpinelli, Changing shapes in the nanoworld, Phys. Rev. Lett.85(1), 110 (2000)
|
| [171] |
D. N. McCarthy and S. A. Brown, Evolution of neck radius and relaxation of coalescing nanoparticles, Phys. Rev. B80, 064107 (2009)
|
| [172] |
F. Family and T. Vicsek, in: Dynamics of Fractal Surfaces, Singapore: World Scientific Press, 1991
|
| [173] |
A. L. Barabasi and H. E. Stanly, Fractal Concepts in Surface Growth, New York: Cambridge University Press, 1995
|
| [174] |
P. Meakin, Fractals, Scaling and Growth Far from Equilibrium, Cambridge: Cambridge University Press, 1998
|
| [175] |
F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, J. Phys. Math. Gen.18(2), L75 (1985)
|
| [176] |
H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Nørskov, Effect of strain on surface diffusion and nucleation, Phys. Rev. B52(20), R14380 (1995)
|
| [177] |
J. Krug, Four lectures on the physics of crystal growth, Physica A313(1−2): 47, 2002
|
| [178] |
P. P. Chatraphorn, Z. Toroczkai, and S. Das Sarma, Epitaxial mounding in limited-mobility models of surface growth, Phys. Rev. B64(20), 205407 (2001)
|
| [179] |
K. J. Caspersen, A. R. Layson, C. R. Stoldt, V. Fournee, P. Thiel, and J. Evans, Development and ordering of mounds during metal(100) homoepitaxy, Phys. Rev. B65(19), 193407 (2002)
|
| [180] |
F. F. Leal, S. C. Ferreira, and S. O. Ferreira, Modelling of epitaxial film growth with an Ehrlich−Schwoebel barrier dependent on the step height, J. Phys.: Condens. Matter23(29), 292201 (2011)
|
| [181] |
R. L. Schwoebel and E. J. Shipsey, Step motion on crystal surfaces, J. Appl. Phys.37(10), 3682 (1966)
|
| [182] |
R. L. Schwoebel, Step motion on crystal surfaces (II), J. Appl. Phys.40(2), 614 (1969)
|
| [183] |
J. Villain, Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. I1(1), 19 (1991)
|
| [184] |
J. G. Amar and F. Family, Step-adatom attraction as a new mechanism for instability in epitaxial growth, Phys. Rev. Lett.77(22), 4584 (1996)
|
| [185] |
D. V. Brunev, I. G. Neizvestny, N. L. Shwartz, and Z. S. Yanovitskaja, Schwoebel barriers and quantum dot lateral size equalization during epitaxial growth, Nanotechnology12(4), 413 (2001)
|
| [186] |
R. Zhu, E. Pan, and P. W. Chung, Fast multiscale kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands, Phys. Rev. B75(20), 205339 (2007)
|
| [187] |
Z. Y. Zhang, J. Detch, and H. Metiu, Surface roughness in thin-film growth: The effect of mass transport between layers, Phys. Rev. B48(7), 4972 (1993)
|
| [188] |
M. Kalff, P. Smilauer, G. Comsa, and T. Michely, No coars-ěning in Pt(111) homoepitaxy, Surf. Sci.426(3), L447 (1999)
|
| [189] |
B. Yang, Elastic energy release rate of quantum islands in Stranski–Krastanow growth, J. Appl. Phys.92(7), 3704 (2002)
|
| [190] |
C. Ratsch, J. DeVita, and P. Smereka, Level-set simulation for the strain-driven sharpening of the island-size distribution during submonolayer heteroepitaxial growth, Phys. Rev. B80(15), 155309 (2009)
|
| [191] |
A. C. Schindler, M. F. Gyure, G. D. Simms, D. Vvedensky, R. Caflisch, C. Connell, and E. Luo, Theory of strain relaxation in heteroepitaxial systems, Phys. Rev. B67(7), 075316 (2003)
|
| [192] |
C. Ratsch, P. Smilauer, D. D. Vvedensky, and A. Zangwill, Mechanism for coherent island formation during heteroepitaxy, J. Phys. I6, 575 (1996)
|
| [193] |
P. Nath and M. Ranganathan, Kinetic Monte Carlo simulations of heteroepitaxial growth with an atomistic model of elasticity, Surf. Sci.606(17−18), 1450 (2012)
|
| [194] |
V. I. Tokar and H. Dreyssé, Nucleation of size calibrated three-dimensional nanodots in atomistic model of strained epitaxy: A Monte Carlo study, J. Phys.: Condens. Matter25(4), 045001 (2013)
|
| [195] |
F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Nanocrystal formation and faceting instability in Al(110) homoepitaxy: True upward adatom diffusion at step edges and island corners, Phys. Rev. Lett.91(1), 016102 (2003)
|
| [196] |
K. Fichthorn and M. Scheffler, Nanophysics: A step up to self-assembly, Nature429(6992), 617 (2004)
|
| [197] |
W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. Wang, and Z. Zhang, Adatom ascending at step edges and faceting on fcc metal (110) surfaces, Phys. Rev. Lett.92(10), 106102 (2004)
|
| [198] |
H. Yang, Q. Sun, Z. Zhang, and Y. Jia, Upward self-diffusion of adatoms and small clusters on facets of fcc metal (110) surfaces, Phys. Rev. B76(11), 115417 (2007)
|
| [199] |
Z. Zhang, Q. Niu, and C. K. Shih, Electronic growth of metallic overlayers on semiconductor substrates, Phys. Rev. Lett.80(24), 5381 (1998)
|
| [200] |
K. Budde, E. Abram, V. Yeh, and M. C. Tringides, Uniform, self-organized, seven-step height Pb/Si(111)-(7 × 7) islands at low temperatures, Phys. Rev. B61(16), R10602 (2000)
|
| [201] |
K. L. Man, M. C. Tringides, M. M. T. Loy, and M. Altman, Superdiffusive motion of the Pb wetting layer on the Si(111) surface, Phys. Rev. Lett.110(3), 036104 (2013)
|
| [202] |
M. Hupalo and M. C. Tringides, Ultrafast kinetics in Pb/Si(111) from the collective spreading of the wetting layer, Phys. Rev. B75(23), 235443 (2007)
|
| [203] |
W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London A243, 299 (1951)
|
| [204] |
H. C. Jeong and E. D. Williams, Steps on surfaces: Experiment and theory, Surf. Sci. Rep.34(6−8): 171 (1999)
|
| [205] |
N. Israeli and D. Kandel, Profile of a decaying crystalline cone, Phys. Rev. B60(8), 5946 (1999)
|
| [206] |
E. Korutcheva, A. M. Turiel, and I. Markov, Coherent Stranski–Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study, Phys. Rev. B61(24), 16890 (2000)
|
| [207] |
K. E. Khor and S. Das Sarma, Quantum dot self-assembly in growth of strained-layer thin films: A kinetic Monte Carlo study, Phys. Rev. B62(24), 16657 (2000)
|
| [208] |
J. E. Prieto and I. Markov, Thermodynamic driving force of formation of coherent three-dimensional islands in Stranski–Krastanov growth, Phys. Rev. B66(7), 073408 (2002)
|
| [209] |
J. E. Prieto and I. Markov, Quantum-dot nucleation in strained-layer epitaxy: Minimum-energy pathway in the stress-driven two-dimensional to three-dimensional transformation, Phys. Rev. B72(20), 205412 (2005)
|
| [210] |
R. Xiang, M. T. Lung, and C. H. Lam, Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy, Phys. Rev. E82(2), 021601 (2010)
|
| [211] |
J. E. Prieto and I. Markov, Second-layer nucleation in coherent Stranski–Krastanov growth of quantum dots, Phys. Rev. B84(19), 195417 (2011)
|
| [212] |
K. M. Chen, D. Jesson, S. Pennycook, T. Thundat, and R. Warmack, Critical nuclei shapes in the stress-driven 2D-to-3D transition, Phys. Rev. B56(4), R1700 (1997)
|
| [213] |
P. Sutter and M. G. Lagally, Nucleationless threedimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett.84(20), 4637 (2000)
|
| [214] |
P. Kratzer, Q. K. K. Liu, P. Acosta-Diaz, C. Manzano, G. Costantini, R. Songmuang, A. Rastelli, O. Schmidt, and K. Kern, Shape transition during epitaxial growth of InAs quantum dots on GaAs(001): Theory and experiment, Phys. Rev. B73(20), 205347 (2006)
|
| [215] |
D. J. Jesson, G. Chen, K. Chen, and S. Pennycook, Selflimiting growth of strained faceted islands, Phys. Rev. Lett.80(23), 5156 (1998)
|
| [216] |
M. Kästner and B. Voigtländer, Kinetically self-limiting growth of Ge Islands on Si(001), Phys. Rev. Lett.82(13), 2745 (1999)
|
| [217] |
J. Johansson and W. Seifert, Kinetics of self-assembled island formation: Part II – Island size, J. Cryst. Growth234(1), 139 (2002)
|
| [218] |
F. Montalenti, P. Raiteri, D. B. Migas, H. von Känel, A. Rastelli, C. Manzano, G. Costantini, U. Denker, O. Schmidt, K. Kern, and L. Miglio, Atomic-scale pathway of the pyramid-to-dome transition during Ge growth on Si (001), Phys. Rev. Lett.93(21), 216102 (2004)
|
| [219] |
H. Eisele, A. Lenz, R. Heitz, R. Timm, M. Dähne, Y. Temko, T. Suzuki, and K. Jacobi, Change of InAs/GaAs quantum dot shape and composition during capping, J. Appl. Phys.104(12), 124301 (2008)
|
| [220] |
A. Rastelli, H. Von Känel, B. Spencer, and J. Tersoff, Prepyramid-to-pyramid transition of SiGe islands on Si(001), Phys. Rev. B68(11), 115301 (2003)
|
| [221] |
A. Vailionis, B. Cho, G. Glass, P. Desjardins, David G. Cahill, and J. E. Greene, Pathway for the strain-driven twodimensional to three-dimensional transition during growth of Ge on Si(001), Phys. Rev. Lett.85, 3672 (2000)
|
| [222] |
B. J. Spencer and J. Tersoff, Symmetry breaking in shape transitions of epitaxial quantum dots, Phys. Rev. B87(16), 161301 (2013)
|
| [223] |
X. B. Niu, G. B. Stringfellow, and F. Liu, Nonequilibrium composition profiles of alloy quantum dots and their correlation with the growth mode, Phys. Rev. Lett.107(7), 076101 (2011)
|
| [224] |
T. P. Schulze and P. Smereka, Kinetic Monte Carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings, Phys. Rev. B86(23), 235313 (2012)
|
| [225] |
F. Watanabe, D. G. Cahill, and J. E. Greene, Roughening rates of strained-layer instabilities, Phys. Rev. Lett.94(6), 066101 (2005)
|
| [226] |
M. A. Grinfeld, Instability of the separation boundry between a nonhydrostatically stressed elastic body and a melt, Sov. Phys. Dokl.31, 831 (1986)
|
| [227] |
D. J. Srolovitz, On the stability of surfaces of stressed solids, Acta Metall.37(2), 621 (1989)
|
| [228] |
O. Pierre-Louis, A. Chame, and Y. Saito, Dewetting of a solid monolayer, Phys. Rev. Lett.99(13), 136101 (2007)
|
| [229] |
K. Thurmer and N. C. Bartelt, Nucleation-limited dewetting of ice films on Pt(111), Phys. Rev. Lett.100(18), 186101 (2008)
|
| [230] |
K. Thürmer, J. E. Reutt-Robey, and E. D. Williams, Nucleation limited crystal shape transformations, Surf. Sci.537(1−3), 123 (2003)
|
| [231] |
R. F. Strickland, Constable, Kinetics and Mechanism of Crystallization, New York: Academic Press, 1968
|
| [232] |
C. Herring, Some theorems on the free energies of crystal surfaces, Phys. Rev.82(1), 87 (1951)
|
| [233] |
A. F. Andreev, Faceting phase transitions of crystals, Sov. Phys. JETP53, 1063 (1981)
|
| [234] |
F. Cheynis, E. Bussmann, F. Leroy, T. Passanante, and P. Mülle, Dewetting dynamics of silicon-on-insulator thin films, Phys. Rev. B84(24), 245439 (2011)
|
| [235] |
F. Leroy, F. Cheynis, T. Passante, and P. Müller, Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts, Phys. Rev. B85(19), 195414 (2012)
|
| [236] |
F. Baletto and R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys.77(1), 371 (2005)
|
| [237] |
W. Li, J. S. Lin, M. Karimi, C. Moses, and G. Vidali, Structural characterization of ultra-thin metal overlayers on Cu(001) by atom beam scattering, Appl. Surf. Sci.48−49, 160 (1991)
|
| [238] |
W. Li, G. Vidali, and O. Biham, Scaling of island growth in Pb overlayers on Cu(001), Phys. Rev. B48(11), 8336 (1993)
|
| [239] |
B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, An atomic-level view of melting using femtosecond electron diffraction, Science302(5649), 1382 (2003)
|
| [240] |
C. V. Shank, R. Yen, and C. Hirlimann, Timeresolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon, Phys. Rev. Lett.50(6), 454 (1983)
|
| [241] |
G. Sciaini and R. J. D. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics, Rep. Prog. Phys.74(9), 096101 (2011)
|
| [242] |
M. J. Aziz, Model for solute redistribution during rapid solidification, J. Appl. Phys.53(2), 1158 (1982)
|
| [243] |
R. Willnecker, D. M. Herlach, and B. Feuerbacher, Grain refinement induced by a critical crystal growth velocity in undercooled melts, Appl. Phys. Lett.56(4), 324 (1990)
|
| [244] |
W. G. Burgers, On the process of transition of the cubicbody-centered modification into the hexagonal-close-packed modification of zirconium, Physica1(7−12), 561 (1934)
|
| [245] |
J. A. Hawreliak, B. El-Dasher, H. Lorenzana, G. Kimminau, A. Higginbotham, B. Nagler, S. M. Vinko, W. J. Murphy, T. Whitcher, J. S. Wark, S. Rothman, and N. Park, In situ X-ray diffraction measurements of the c/a ratio in the highpressure ε phase of shock-compressed polycrystalline iron, Phys. Rev. B83(14), 144114 (2011)
|
| [246] |
B. Dupé, B. Amadon, Y. P. Pellegrini, and C. Denoual, Mechanism for the α → ε phase transition in iron, Phys. Rev. B87(2), 024103 (2013)
|
| [247] |
T. Kudo, T. Inoue, T. Kita, and O. Wada, Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image, J. Appl. Phys.104(7), 074305 (2008)
|
| [248] |
A. Feltrin and A. Freundlich, RHEED metrology of Stranski–Krastanov quantum dots, J. Cryst. Growth301−302, 38 (2007)
|
| [249] |
A. Freundlich and C. Rajapaksha, Quantum dots and nanostructures: Synthesis, characterization, and modeling VIII, Proc. SPIE7947, 79470P (2011)
|
| [250] |
M. Yakimov, V. Tokranov, G. Agnello, J. van Eisden, and S. Oktyabrsky, In situ monitoring of formation of InAs quantum dots and overgrowth by GaAs or AlAs, J. Vac. Sci. Technol. B23(3), 1221 (2005)
|
| [251] |
K. Shimomura, T. Shirasaka, D. M. Tex, F. Yamada and I. Kamiya, RHEED transients during InAs quantum dot growth by MBE, J. Vac. Sci. Technol. B30, 02B128 (2012)
|
| [252] |
J. M. Gérard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouché, and F. Barthe, Optical investigation of the selforganized growth of InAs/GaAs quantum boxes, J. Cryst. Growth150, 351 (1995)
|
| [253] |
M. Takahasi, T. Kaizu, and J. Mizuki, In situ monitoring of internal strain and height of InAs nanoislands grown on GaAs(001), Appl. Phys. Lett.88(10), 101917 (2006)
|
| [254] |
G. R. Bell, M. Pristovsek, T. Tsukamoto, B. G. Orr, Y. Arakawa, and N. Koguchi, In situ scanning tunneling microscopy of InAs quantum dots on GaAs(0 0 1) during molecular beam epitaxial growth, Surf. Sci.544(2−3), 234 (2003)
|
| [255] |
S. Tsukamoto, T. Honma, G. R. Bell, A. Ishii, and Y. Arakawa, Atomistic insights for InAs quantum dot formation on GaAs(001) using STM within a MBE growth chamber, Small2(3), 386 (2006)
|
| [256] |
H. R. Eisenberg and D. Kandel, Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett.85(6), 1286 (2000)
|
| [257] |
P. Müller and R. Kern, The physical origin of the twodimensional towards three-dimensional coherent epitaxial Stranski−Krastanov transition, Appl. Surf. Sci.102, 6 (1996)
|
| [258] |
J. Tersoff, Stress-induced layer-by-layer growth of Ge on Si(100), Phys. Rev. B43(11), 9377 (1991)
|
| [259] |
M. J. Beck, A. van de Walle, and M. Asta, Surface energetics and structure of the Ge wetting layer on Si(100), Phys. Rev. B70(20), 205337 (2004)
|
| [260] |
M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Key role of the wetting layer in revealing the hidden path of Ge/Si(001) Stranski–Krastanow growth onset, Phys. Rev. B80(20), 205321 (2009)
|
| [261] |
I. Daruka and A. L. Barabási, Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium, Phys. Rev. Lett.79(19), 3708 (1997)
|
| [262] |
C. Chiu, Z. Huang, and C. T. Poh, Formation of nanostructures by the activated Stranski–Krastanow transition method, Phys. Rev. Lett.93(13), 136105 (2004)
|
| [263] |
D. V. Yurasov and Y. N. Drozdov, Critical thickness for the Stranski–Krastanov transition treated with the effect of segregation, Semiconductors42(5), 563 (2008)
|
| [264] |
H. R. Eisenberg and D. Kandel, Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett.85(6), 1286 (2000)
|
| [265] |
C. H. Chiu and H. Gao, in: Thin Films: Stresses and Mechanical Properties V, edited by S. P. Baker, et al., MRS Symposia Proceedings No. 356, Pittsburgh: Materials Research Society, 1995, page 33
|
| [266] |
R. V. Kukta and L. B. Freund, in: Thin Films: Stresses and Mechanical Properties VI, edited by W. W. Gerberich, et al., MRS Symposia Proceedings No. 436, Pittsburgh: Materials Research Society, 1997, page 493
|
| [267] |
B. J. Spencer, Asymptotic derivation of the glued-wettinglayer model and contact-angle condition for Stranski–Krastanow islands, Phys. Rev. B59(3), 2011 (1999)
|
| [268] |
S. M. Shivaprasad, S. Bera, and Y. Aparna, The epitaxial growth of Ag on Si(111)-(7 × 7) surface and its ( √3 × √3)- R30 surface phase transformation, Bull. Mater. Sci.21(2), 111 (1998)
|
| [269] |
S. Åozkaya, M. Çäkmak, and B. Alkan, Atomic and electronic structures of the group-IV elements on Si(111)-(√3 ×√3) surface, J. Phys. Conf. Ser.100, 072025 (2008)
|
| [270] |
H. W. Yeom, K. Yoo, and D. H. Oh, Electronic structures of Ga-induced incommensurate and commensurate overlayers on the Si(111) surface, Surf. Sci.605(1−2), 146 (2011)
|
| [271] |
J. Čechal, M. Kolıbal, P. Kostelnık, and T. Šikola, Gallium structure on the Si(111)-(7× 7) surface: Influence of Ga coverage and temperature, J. Phys.: Condens. Matter19(1), 016011 (2007)
|
| [272] |
G. Meyer, M. Michailov, and M. Henzler, LEED studies of the epitaxy of Pb on Cu(111), Surf. Sci.202(1−2), 125 (1988)
|
| [273] |
C. Nagl, O. Haller, E. Platzgummer, M. Schmid, and P. Varga, Submonolayer growth of Pb on Cu(111): surface alloying and de-alloying, Surf. Sci.321(3), 237 (1994)
|
| [274] |
B. H. Müller, Th. Schmidt, and M. Henzler, Growth and melting of a Pb monolayer on Cu(111), Surf. Sci.376(1−3), 123 (1997)
|
| [275] |
Y. Tu and J. Tersoff, Origin of apparent critical thickness for island formation in heteroepitaxy, Phys. Rev. Lett.93(21), 216101 (2004)
|
| [276] |
T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs, Phys. Rev. Lett.86(11), 2381 (2001)
|
| [277] |
J. G. Belk, J. L. Sudijono, D. M. Holmes, C. F. McConville, T. S. Jones, and B. A. Joyce, Spatial distribution of In during the initial stages of growth of InAs on GaAs(001)-c(4 × 4), Surf. Sci.365(3), 735 (1996)
|
| [278] |
T. J. Krzyzewski, P. B. Joyce, G. R. Bell, and T. S. Jones, Surface morphology and reconstruction changes during heteroepitaxial growth of InAs on GaAs(001)- c(2× 4), Surf. Sci.482−485, 891 (2001)
|
| [279] |
J. Grabowski, C. Prohl, B. Höpfner, M. Dähne, and H. Eisele, Evolution of the InAs wetting layer on GaAs(001)-(4× 4) on the atomic scale, Appl. Phys. Lett.95(23), 233118 (2009)
|
| [280] |
C. Prohl, B. Höpfner, J. Grabowski, J. Grabowski, M. Dähne, and H. Eisele, Atomic structure and strain of the InAs wetting layer growing on GaAs(001)-c(4×4), J. Vac. Sci. Tech. B28, C5E13 (2009)
|
| [281] |
M. Sauvage-Simkin, Y. Garreau, R. Pinchaux, M. Véron, J. Landesman, and J. Nagle, Commensurate and incommensurate phases at reconstructed (In,Ga)As(001) surfaces: X-ray diffraction evidence for a composition lock-in, Phys. Rev. Lett.75(19), 3485 (1995)
|
| [282] |
C. Ratsch and A. Zangwill, Equilibrium theory of the Stranski–Krastanov epitaxial morphology, Surf. Sci.293(1−2), 123 (1993)
|
| [283] |
V. I. Tokar and H. Dreyssé, Lattice gas model of coherent strained epitaxy, Phys. Rev. B68(19), 195419 (2003)
|
| [284] |
V. I. Tokar and H. Dreysse, Size calibration of self-assembled nanoparticles in a model of strained epitaxy with passive substrate, Phys. Rev. B72(3), 035438 (2005)
|
| [285] |
W. D. Knight, K. Clemenger, W. A. de Heer, W. Saunders, M. Chou, and M. Cohen, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett.52(24), 2141 (1984)
|
| [286] |
T. P. Martin, Shell of atoms, Phys. Rep.273(4), 199 (1996)
|
| [287] |
S. Gwo, C. P. Chou, C. L. Wu, Y. J. Ye, S. J. Tsai, W. C. Lin, and M. T. Lin, Self-limiting size distribution of supported cobalt nanoclusters at room temperature, Phys. Rev. Lett.90(18), 185506 (2003)
|
| [288] |
M. Jałochowski, M. Hoffmann, and E. Bauer, Pb layer-bylayer growth at very low temperatures, Phys. Rev. B51(11), 7231 (1995)
|
| [289] |
Y. L. Wang and M. Y. Lai, Formation of surface magic clusters: A pathway to monodispersed nanostructures on surfaces, J. Phys.: Condens. Matter13(31), R589 (2001)
|
| [290] |
J. F. Jia, X. Liu, J. Z. Wang, J. L. Li, X. Wang, Q. K. Xue, Z. Q. Li, Z. Zhang, and S. Zhang, Fabrication and structural analysis of Al, Ga, and In nanocluster crystals, Phys. Rev. B66(16), 165412 (2002)
|
| [291] |
C. Priester and M. Lannoo, Origin of self-assembled quantum dots in highly mismatched heteroepitaxy, Phys. Rev. Lett.75(1), 93 (1995)
|
| [292] |
T. Kudo, T. Inoue, T. Kita, and O. Wada, Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image, J. Appl. Phys.104(7), 074305 (2008)
|
| [293] |
M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science281(5383), 1647 (1998)
|
| [294] |
C. Xu, X. Lai, G. W. Zajac, and D.W. Goodman, Scanning tunneling microscopy studies of the TiO2(110) surface: Structure and the nucleation growth of Pd, Phys. Rev. B56(11), 13464 (1997)
|
| [295] |
F. Liu, Self-assembly of three-dimensional metal islands: Nonstrained versus strained islands, Phys. Rev. Lett.89(24), 246105 (2002)
|
| [296] |
Z. Gai, B. Wu, J. P. Pierce, G. A. Farnan, D. Shu, M. Wang, Z. Zhang, and J. Shen, Self-assembly of nanometer-scale magnetic dots with narrow size distributions on an insulating substrate, Phys. Rev. Lett.89(23), 235502 (2002)
|
| [297] |
A. C. Levi and M. Kotrla, Theory and simulation of crystal growth, J. Phys.: Condens. Matter9(2), 299 (1997)
|
| [298] |
J. Cleick, Chaos, Viking Penguin Inc., 1987
|
| [299] |
J. Wu, P. Jin, Y. H. Jiao, X. J. Lv, and Z. G. Wang, Evolution of InAs/GaAs(001) islands during the two- to threedimensional growth mode transition in molecular-beam epitaxy, Nanotechnology18(16), 165301 (2007)
|
| [300] |
J. A. Floro, M. B. Sinclair, E. Chason, L. Freund, R. Twesten, R. Hwang, and G. Lucadamo, Novel SiGe island coarsening kinetics: Ostwald ripening and elastic interactions, Phys. Rev. Lett.84(4), 701 (2000)
|
| [301] |
M. Meixner, R. Kunert, and E. Scholl, Control of strainmediated growth kinetics of self-assembled semiconductor quantum dots, Phys. Rev. B67(19), 195301 (2003)
|
| [302] |
L. G. Wang, P. Kratzer, M. Scheffler, and N. Moll, Formation and Stability of Self-Assembled Coherent Islands in Highly Mismatched Heteroepitaxy, Phys. Rev. Lett.82(20), 4042 (1999)
|
| [303] |
L. G. Wang, P. Kratzer, N. Moll, and M. Scheffler, Size, shape, and stability of InAs quantum dots on the GaAs(001) substrate, Phys. Rev. B62(3), 1897 (2000)
|
| [304] |
A. Polimeni, A. Patane, M. Capizzi, F. Martelli, L. Nasi, and G. Salviati, Self-aggregation of quantum dots for very thin InAs layers grown on GaAs, Phys. Rev. B53(8), R4213 (1996)
|
| [305] |
V. G. Dubrovskii, M. A. Kazansky, M. V. Nazarenko, and L. T. Adzhemyan, Numerical analysis of Ostwald ripening in two-dimensional systems, J. Chem. Phys.134(9), 094507 (2011)
|
| [306] |
Y. S. Djikaev and E. Ruckenstein, Kinetic theory of nucleation based on a first passage time analysis: Improvement by the density-functional theory, J. Chem. Phys.123(21), 214503 (2005)
|
| [307] |
N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001), Appl. Phys. Lett.68(23), 3299 (1996)
|
| [308] |
D. S. Guimard, H. Lee, M. Nishioka, and Y. Arakawa, Growth of high-uniformity InAs/GaAs quantum dots with ultralow density below 107cm − 2 and emission above 1.3 µm, Appl. Phys. Lett.92(16), 163101 (2008)
|
| [309] |
A. Rosenauer, D. Gerthsen, D. Dyck, M. Arzberger, G. Böhm, and G. Abstreiter, Quantification of segregation and mass transport in InxGa1−xAs/GaAs Stranski−Krastanow layers, Phys. Rev. B64(24), 245334 (2001)
|
| [310] |
M. Gsell, P. Jakob, and D. Menzel, Effect of substrate strain on adsorption, Science280(5364), 717 (1998)
|
| [311] |
M. Mavrikakis, B. Hammer, and J. K. Nørskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett.81(13), 2819 (1998)
|
| [312] |
K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells, Appl. Phys. Lett.61(5), 557 (1992)
|
| [313] |
D. Litvinov, D. Gerthsen, A. Rosenauer, M. Schowalter, T. Passow, P. Feinäugle, and M. Hetterich, Transmission electron microscopy investigation of segregation and critical floating-layer content of indium for island formation in InxGa1−xAs, Phys. Rev. B74(16), 165306 (2006)
|
| [314] |
J. M. García, J. P. Silveira, and F. Briones, Strain relaxation and segregation effects during self-assembled InAs quantum dots formation on GaAs(001), Appl. Phys. Lett.77(3), 409 (2000)
|
| [315] |
A. G. Cullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, Stranski−Krastanow transition and epitaxial island growth, Phys. Rev. B66(8), 081305 (2002)
|
| [316] |
A. G. Cullis, D. J. Norris, M. A. Migliorato, and M. Hopkinson, Surface elemental segregation and the Stranski−Krastanow epitaxial islanding transition, Appl. Surf. Sci.244(1−4), 65 (2005)
|
| [317] |
T. Honma, S. Tsukamoto, and Y. Arakawa, In Situ scanning tunneling microscope observation of InAs wetting layer formation on GaAs(001) during molecular beam epitaxy growth at 500 °C, Jpn. J. Appl. Phys.45(30), L777 (2006)
|
| [318] |
F. Patella, S. Nufris, F. Arciprete, M. Fanfoni, E. Placidi, A. Sgarlata, and A. Balzarotti, Tracing the two- to threedimensional transition in the InAs/GaAs(001) heteroepitaxial growth, Phys. Rev. B67(20), 205308 (2003)
|
| [319] |
J. M. Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures, Phys. Rev. B40(9), 6149 (1989)
|
| [320] |
W. D. Xiao, Z. J. Yan, S. S. Kushvaha, M. J. Xu, and X. S. Wang, Different growth behavior of Ge, Al and Sb on graphite, Surf. Rev. Lett.13(2−3), 287 (2006)
|
| [321] |
S. S. Kushvaha, Z. Yan, W. Xiao, M. J. Xu, Q. K. Xue, and X. S. Wang, Self-assembled Ge, Sb and Al nanostructures on graphite: comparative STM studies, Nanotechnology18(14), 145501, (2007)
|
| [322] |
S. S. Kushvaha, H. Xu, W. Xiao, H. L. Zhang, A. T. S. Wee, and X. S. Wang, Scanning tunneling microscopy investigation of growth of self-assembled indium and aluminum nanostructures on inert substrates, Thin Solid Films517(16), 4540 (2009)
|
| [323] |
S. S. Kushvaha, H. L. Zhang, Z. Yan, A. T. S. Wee, and X. S. Wang, Growth of self-assembled Mn, Sb and MnSb nanostructures on highly oriented pyrolytic graphite, Thin Solid Films 520(23), 6909 (2012)
|
| [324] |
A. Ohtake, M. Ozeki, M. Terauchi, F. Sato, and M. Tanaka, Strain-induced surface segregation in In0.5Ga0.5 As/GaAs heteroepitaxy, Appl. Phys. Lett.80(21), 3931 (2002)
|
| [325] |
A. Ohtake and M. Ozeki, Growth mode of Inx Ga1−x As (0<∼ x<∼ 0.5) on GaAs(001) under As-deficient conditions, Phys. Rev. B65(15), 155318 (2002)
|
| [326] |
J. S. Kim and N. Koguchi, Near room temperature droplet epitaxy for fabrication of InAs quantum dots, Appl. Phys. Lett.85(24), 5893 (2004)
|
| [327] |
A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties, J. Appl. Phys.107(1), 014312 (2010)
|
| [328] |
K. Reyes, P. Smereka, D. Nothern, J. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, and C. Frigeri, Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory, Phys. Rev. B87(16), 165406 (2013)
|
| [329] |
F. Bastiman, A. G. Cullis, and M. Hopkinson, InAs/GaAs(001) wetting layer formation observed in situ by concurrent MBE and STM, Surf. Sci.603(24), 3439 (2009)
|
| [330] |
J. R. Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys.39(8), 4032 (1968)
|
| [331] |
J. R. Arthur, Surface stoichiometry and structure of GaAs, Surf. Sci.43(2), 449 (1974)
|
| [332] |
J. R. Arthur, Gallium arsenide surface structure and reaction kinetics: Field emission microscopy, J. Appl. Phys.37(8), 3057 (1966)
|
| [333] |
C. T. Foxon, M. R. Boudry, and B. A. Joyce, Evaluation of surface kinetic data by the transform analysis of modulated molecular beam measurements, Surf. Sci.44(1), 69 (1974)
|
| [334] |
C. T. Foxon and B. A. Joyce, Interaction kinetics of As2 and Ga on 100 GaAs surfaces, Surf. Sci.64(1), 293 (1977)
|
| [335] |
C. G. Morgan, P. Kratzer, and M. Scheffler, Arsenic dimer dynamics during MBE growth: Theoretical evidence for a novel chemisorption state of As2 molecules on GaAs surfaces, Phys. Rev. Lett.82(24), 4886 (1999)
|
| [336] |
M. Itoh, G. R. Bell, A. R. Avery, T. S. Jones, B. A. Joyce, and D. D. Vvedensky, Island nucleation and growth on reconstructed GaAs(001) surfaces, Phys. Rev. Lett.81, 633 (1998)
|
| [337] |
S. V. Ghaisas and A. Madhukar, Monte Carlo simulations of MBE growth of III–V semiconductors: The growth kinetics, mechanism, and consequences for the dynamics of RHEED intensity, J. Vac. Sci. Technol. B3(2), 540 (1985)
|
| [338] |
S. V. Ghaisas and A. Madhukar, Role of surface molecular reactions in influencing the growth mechanism and the nature of nonequilibrium surfaces: A Monte Carlo study of molecular-beam epitaxy, Phys. Rev. Lett.56(10), 1066 (1986)
|
| [339] |
S. V. Ghaisas and A. Madhukar, Surface kinetics and growth interruption in molecular-beam epitaxy of compound semiconductors: A computer simulation study, J. Appl. Phys.65(10), 3872 (1989)
|
| [340] |
T. Shitara, D. D. Vvedensky, M. R. Wilby, J. Zhang, J. Neave, and B. Joyce, Step-density variations and reflection high-energy electron-diffraction intensity oscillations during epitaxial growth on vicinal GaAs(001), Phys. Rev. B46(11), 6815 (1992)
|
| [341] |
P. Šmilauer and D. D. Vvedensky, Step-edge barriers on GaAs(001), Phys. Rev. B48(23), 17603 (1993)
|
| [342] |
K. Shiraishi and T. Ito, Theoretical investigation of adsorption behavior during molecular beam epitaxy growth of GaAs: ab initio based microscopic calculation, J. Cryst. Growth150, 158 (1995)
|
| [343] |
G. Colayni and R. Venkat, Growth dynamics of InGaAs by MBE: Process simulation and theoretical analysis, J. Cryst. Growth211(1−4), 21 (2000)
|
| [344] |
P. Kratzer, E. Penev, and M. Scheffler, Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations, Appl. Surf. Sci.216(1−4), 436 (2003)
|
| [345] |
J. Wu, Novel scenario for epitaxial growth process of quantum dots, Micronanoelectronic Technology49, 141 (2012)
|
| [346] |
J. Wu and P. Jin, Epitaxial Growth Process of Quantum Dots, in: Nanotechnology, edited by S. Sinha, N. K. Navani, and J. N. Govil, Studium Press LLC, Volume 3, 2013, pp 335−368
|
| [347] |
A. Mujica, A. Rubio, A. Muñoz, and R. Needs, Highpressure phases of group-IV, III–V, and II–VI compounds, Rev. Mod. Phys.75(3), 863 (2003)
|
| [348] |
N. E. Christensen, Calculated equation of state of InAs, Phys. Rev. B33(7), 5096 (1986)
|
| [349] |
N. E. Christensen, High Pressure in Semiconductor Physics (I), edited by T Suski and W Paul, New York: Academic, 1998
|
| [350] |
L. Pedesseau, J. Even, A. Bondi, W. Guo, S. Richard, H. Folliot, C. Labbe, C. Cornet, O. Dehaese, A. Le Corre, O. Durand, and S. Loualiche, Theoretical study of highly strained InAs material from first-principles modelling: Application to an ideal QD, J. Phys. D41(16), 165505 (2008)
|
| [351] |
Y. K. Vohra, S. T. Weir, and A. L. Ruoff, High-pressure phase transitions and equation of state of the III-V compound InAs up to 27 GPa, Phys. Rev. B31(11), 7344 (1985)
|
| [352] |
M. Durandurdu, Structural phase transition of germanium under uniaxial stress: An ab initio study, Phys. Rev. B71(5), 054112 (2005)
|
| [353] |
R. G. Hennig, A. Wadehra, K. P. Driver, W. D. Parker, C. J. Umrigar, and J. W. Wilkins, Phase transformation in Si from semiconducting diamond to metallic β-Sn phase in QMC and DFT under hydrostatic and anisotropic stress, Phys. Rev. B82(1), 014101 (2010)
|
| [354] |
J. C. Jamieson, Crystal structures at high pressures of metallic modifications of silicon and germanium, Science139(3556), 762 (1963)
|
| [355] |
K. Gáal-Nagy, A. Bauer, M. Schmitt, K. Karch, P. Pavone, and D. Strauch, Temperature and dynamical effects on the high-pressure cubic-diamond ↔ β-Tin phase transition in Si and Ge, Physica Status Solidi (b): Basic Res.211(1), 275 (1999)
|
| [356] |
C. Cheng, W. H. Huang, and H. J. Li, Thermodynamics of uniaxial phase transition: Ab initio study of the diamond-to-β-tin transition in Si and Ge, Phys. Rev. B63(15), 153202 (2001)
|
| [357] |
K. H. Hellwege, Physics of Group IV Elements and III-V Elements, Landolt–Börnstein, New Series, Group III, Vol. 17, Part a, Berlin: Springer, 1982
|
| [358] |
A. Jayaraman, W. Klement, and G. C. Kennedy, Melting and polymorphism at high pressures in some group IV elements and III-V compounds with the diamond/zincblende structure, Phys. Rev.130(2), 540 (1963)
|
| [359] |
F. P. Bundy, Phase diagrams of silicon and germanium to 200 kbar, 1000 °C, J. Chem. Phys.41(12), 3809 (1964)
|
| [360] |
D. J. Bottomley, The physical origin of InAs quantum dots on GaAs(001), Appl. Phys. Lett.72(7), 783 (1998)
|
| [361] |
D. J. Bottomley, The free energy of condensed matter under stress, Jpn. J. Appl. Phys.36(Part 2, No. 11A), L1464 (1997)
|
| [362] |
D. J. Bottomley, Formation and shape of InAs nanoparticles on GaAs surfaces, J. Vac. Sci. Technol. B17(2), 259 (1999)
|
| [363] |
F. Rosei and P. Raiteri, Stress induced surface melting during the growth of the Ge wetting layer on Si(001) and Si(111), Appl. Surf. Sci.195(1−4), 16 (2002)
|
| [364] |
D. K. Biegelsen, R. Bringans, J. Northrup, and L.E. Swartz, Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy, Phys. Rev. B41(9), 5701 (1990)
|
| [365] |
C. Ratsch, Strain induced change of surface reconstructions for InAs(001), Phys. Rev. B63, 161306(R) (2001)
|
| [366] |
A. Ohtake, P. Kocan, J. Nakamura, A. Natori, and N. Koguchi, Kinetics in surface reconstructions on GaAs(001), Phys. Rev. Lett.92(23), 236105 (2004)
|
| [367] |
M. Sauvage-Simkin, R. Pinchaux, J. Massies, P. Calverie, N. Jedrecy, J. Bonnet, and I. Robinson, Fractional stoichiometry of the GaAs(001)-c(4 × 4) surface: An in-situ X-ray scattering study, Phys. Rev. Lett.62(5), 563 (1989)
|
| [368] |
F. Liu, F. Wu, and M. G. Lagally, Effect of strain on structure and morphology of ultrathin Ge films on Si(001), Chem. Rev.97(4), 1045 (1997)
|
| [369] |
B. Voigtländer, Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth, Surf. Sci. Rep.43(5−8), 127 (2001)
|
| [370] |
J. Tersoff, Missing dimers and strain relief in Ge films on Si(100), Phys. Rev. B45(15), 8833 (1992)
|
| [371] |
F. Liu and M. G. Lagally, Interplay of stress, structure, and stoichiometry in Ge-covered Si(001), Phys. Rev. Lett.76(17), 3156 (1996)
|
| [372] |
T. Zhou, G. Renaud, C. Revenant, J. Issartel, T. U. Schülli, R. Felici, and A. Malachias, Atomic structure and composition of the 2 × N reconstruction of the Ge wetting layer on Si(001) investigated by surface X-ray diffraction, Phys. Rev. B83(19), 195426 (2011)
|
| [373] |
M. Tomitori, K. Watanabe, M. Kobayashi, and O. Nishikawa, STM study of the Ge growth mode on Si(001) substrates, Appl. Surf. Sci.76−77, 322 (1994)
|
| [374] |
I. Goldfarb, J. H. G. Owen, P. T. Hayden, D. R. Bowler, K. Miki, and G. A. D. Briggs, Gas-source growth of group IV semiconductors (III): Nucleation and growth of Ge/Si(001), Surf. Sci.394(1−3), 105 (1997)
|
| [375] |
P. W. Sutter, J. I. Flege, and E. I. Sutter, Epitaxial graphene on ruthenium, Nature7(5), 406 (2008)
|
| [376] |
M. Henzler, Growth of epitaxial monolayers, Surf. Sci.357−358, 809 (1996)
|
| [377] |
B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett.97(22), 223109 (2010)
|
| [378] |
A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voon, S. Vizzini, B. Aufray, and H. Oughaddou, A review on silicene — New candidate for electronics, Surf. Sci. Rep.67(1), 1 (2012)
|
| [379] |
H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J. Y. Hoarau, B. Aufray, and J. P. Bibérian, Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature, J. Phys.: Condens. Matter24(17), 172001 (2012)
|
| [380] |
B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett.12(7), 3507 (2012)
|
| [381] |
H.Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Phys. Rev. B80(15), 155453 (2009)
|
| [382] |
S. Scandolo, M. Bernasconi, G. L. Chiarotti, P. Focher, and E. Tosatti, Pressure-induced transformation path of graphite to diamond, Phys. Rev. Lett.74(20), 4015 (1995)
|
| [383] |
D. T. Wang, N. Esser, M. Cardona, and J. Zegenhagen, Epitaxy of Sn on Si(111), Surf. Sci.343(1−2), 31 (1995)
|
| [384] |
L. L. Wang, X. C. Ma, S. H. Ji, Y. Fu, Q. Shen, J. Jia, K. Kelly, and Q. Xue, Epitaxial growth and quantum well states study of Sn thin films on Sn induced Si(111)-(23 × 23) R30° surface, Phys. Rev. B77(20), 205410 (2008)
|
| [385] |
Q. Shen, W. Li, G. Dong, G. F. Sun, Y. Sun, X. Ma, J. Jia, and Q. Xue, Self-assembled Sn nanoplatelets on Si(1 1 1)-2 √3 × 2 √3-Sn surfaces, J. Phys. D42(1), 015305 (2009)
|
| [386] |
L. L. Wang, X. C. Ma, Y. X. Ning, S. H. Ji, Y. S. Fu, J. F. Jia, K. F. Kelly and Q. K. Xue, Atomic scale study of strain relaxation in Sn islands on Sn-induced Si(111)-(2 √3 × 2 √3) surface, Appl. Phys. Lett.94(15), 153111 (2009)
|
| [387] |
A. N’Diaye, S. Bleikamp, P. Feibelman, and T. Michely, Two-dimensional Ir cluster lattice on a graphene Moiŕe on Ir(111), Phys. Rev. Lett.97(21), 215501 (2006)
|
| [388] |
J. P. Feibelman, Pinning of graphene to Ir(111) by flat Ir dots, Phys. Rev. B77(16), 165419 (2008)
|
| [389] |
C. Busse, P. Lazic, R. Djemour, J. Coraux, T. Gerber, N. Atodiresei, V. Caciuc, R. Brako, A. T. N’Diaye, S. Blügel, J. Zegenhagen, and T. Michely, Graphene on Ir(111): Physisorption with chemical modulation, Phys. Rev. Lett.107(3), 036101 (2011)
|
| [390] |
E. Loginova, S. Nie, K. Thurmer, N. C. Bartelt, and K. F. McCarty, Defects of graphene on Ir(111): Rotational domains and ridges, Phys. Rev. B80(8), 085430 (2009)
|
| [391] |
D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Control of graphene’s properties by reversible hydrogenation: Evidence for graphane, Science323(5914), 610 (2009)
|
| [392] |
C. Freeman, F. Claeyssens, N. Allan, and J. Harding, Graphitic nanofilms as precursors to Wurtzite films: Theory, Phys. Rev. Lett.96(6), 066102 (2006)
|
| [393] |
C. Tusche, H. L. Meyerheim, and J. Kirschner, Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets, Phys. Rev. Lett.99(2), 026102 (2007)
|
| [394] |
G. Weirum, G. Barcaro, A. Fortunelli, F. Weber, R. Schennach, S. Surnev, and F. P. Netzer, Growth and surface structure of zinc oxide layers on a Pd(111) surface, J. Phys. Chem. C114(36), 15432 (2010)
|
| [395] |
M. F. Jarrold and V. A. Constant, Silicon cluster ions: Evidence for a structural transition, Phys. Rev. Lett.67(21), 2994 (1991)
|
| [396] |
M. F. Jarrold, Nanosurface chemistry on size-selected silicon clusters, Science252(5009), 1085 (1991)
|
| [397] |
M. F. Jarrold and J. E. Bower, Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres, J. Chem. Phys.96(12), 9180 (1992)
|
| [398] |
R. R. Hudgins, M. Imai, M. F. Jarrold, and P. Dugourd, High-resolution ion mobility measurements for silicon cluster anions and cations, J. Chem. Phys.111(17), 7865 (1999)
|
| [399] |
A. A. Shvartsburg, R. R. Hudgins, P. Dugourd, and M. F. Jarrold, Structural information from ion mobility measurements: Applications to semiconductor clusters, Chem. Soc. Rev.30(1), 26 (2001)
|
| [400] |
D. F. Hagen, Characterization of isomeric compounds by gas and plasma chromatography, Anal. Chem.51(7), 870 (1979)
|
| [401] |
G. von Helden, M. T. Hsu, P. R. Kemper, and M. T. Bowers, Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes, J. Chem. Phys.95(5), 3835 (1991)
|
| [402] |
S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng, Endohedral Silicon Fullerenes SiN(27 N 39), J. Am. Chem. Soc.126(42), 13845 (2004)
|
| [403] |
J. Zhao, J. Wang, J. Jellinek, S. Yoo, and X. C. Zeng, Stuffed fullerene structures for medium-sized silicon clusters, Eur. Phys. J. D34(1−3), 35 (2005)
|
| [404] |
O. Oña, V. E. Bazterra, M. C. Caputo, J. Facelli, P. Fuentealba, and M. Ferraro, Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18−Si60, Phys. Rev. A73(5), 053203 (2006)
|
| [405] |
J. Zhao, L. Ma, and B. Wen, Lowest-energy endohedral fullerene structure of Si60 from a genetic algorithm and density-functional theory, J. Phys.: Condens. Matter19(22), 226208 (2007)
|
| [406] |
R. L. Zhou and B. C. Pan, Structural features of silicon clusters Sin(n = 40−57, 60), Phys. Lett. A368(5), 396 (2007)
|
| [407] |
M. Ehbrecht and F. Huisken, Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane, Phys. Rev. B59(4), 2975 (1999)
|
| [408] |
D. K. Yu, R. Q. Zhang, and S. T. Lee, Structural transition in nanosized silicon clusters, Phys. Rev. B65(24), 245417 (2002)
|
| [409] |
G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Photoluminescence properties of silicon nanocrystals as a function of their size, Phys. Rev. B62(23), 15942 (2000)
|
| [410] |
P. Mélinon, P. Kéghélian, B. Prével, A. Perez, G. Guiraud, J. LeBrusq, J. Lermé, M. Pellarin, M. Broyer, Nanostructured silicon films obtained by neutral cluster depositions, J. Chem. Phys.107(23), 10278 (1997)
|
| [411] |
P. Mélinon, P. Kéghélian, B. Prével, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pellarin, J. Lermé, M. Broyer, J. L. Rousset, and P. Delichére, Structural, vibrational, and optical properties of silicon cluster assembled films, J. Chem. Phys.108(11), 4607 (1998)
|
| [412] |
A. N. Goldstein, The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors, Appl. Phys. A62(1), 33 (1996)
|
| [413] |
U. Röthlisberger, W. Andreoni, and M. Parrinello, Structure of nanoscale silicon clusters, Phys. Rev. Lett.72(5), 665 (1994)
|
| [414] |
D. Tománek and M. A. Schluter, Growth regimes of carbon clusters, Phys. Rev. Lett.67(17), 2331 (1991)
|
| [415] |
P. R. C. Kent, M. D. Towler, R. J. Needs, and G. Rajagopal, Carbon clusters near the crossover to fullerene stability, Phys. Rev. B62(23), 15394 (2000)
|
| [416] |
P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford: Clarendon Press, 1995
|
| [417] |
E. Hernández, P. Ordejón, and H. Terrones, Fullerene growth and the role of nonclassical isomers, Phys. Rev. B63(19), 193403 (2001)
|
| [418] |
J. R. Heath, in: Fullerenes: Synthesis, Properties and Chemistry of Large Carbon Clusters, edited by G. S. Hammond and V. J. Kuck, ACS Symposium Series No. 481, Washington: American Chemical Society, 1991, page 1
|
| [419] |
A. A. Shvartsburg, R. R. Hudgins, P. Dugourd, R. Gutierrez, T. Frauenheim, and M. Jarrold, Observation of “stick” and “handle” intermediates along the fullerene road, Phys. Rev. Lett.84(11), 2421 (2000)
|
| [420] |
A. S. Barnard, Theory and modeling of nanocarbon phase stability, Diamond Related Materials15(2−3), 285 (2006)
|
| [421] |
S. J. Kwon and J.G. Park, Theoretical analysis of the graphitization of a nanodiamond, J. Phys.: Condens. Matter19(38), 386215 (2007)
|
| [422] |
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature318(6042), 162 (1985)
|
| [423] |
A. S. Barnard, Modelling of nanoparticles: Approaches to morphology and evolution, Rep. Prog. Phys.73, 086502 (2010)
|
| [424] |
R. N. Kostoff, J. S. Murday, C. G. Y. Lau, and W. M. Tolles, The seminal literature of nanotechnology research, J. Nanopart. Res.8, 193 (2006)
|
| [425] |
S. H. Tolbert and A. P. Alivisatos, The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure, J. Chem. Phys.102(11), 4642 (1995)
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg