Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy

Ju Wu, Peng Jin

PDF(974 KB)
PDF(974 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (1) : 108101. DOI: 10.1007/s11467-014-0422-4
Condensed Matter, Materials Physics, and Statistical Physics
Condensed Matter, Materials Physics, and Statistical Physics

Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy

Author information +
History +

Abstract

Currently, the nature of self-assembly of three-dimensional epitaxial islands or quantum dots (QDs) in a lattice-mismatched heteroepitaxial growth system, such as InAs/GaAs(001) and Ge/Si(001) as fabricated by molecular beam epitaxy (MBE), is still puzzling. The purpose of this article is to discuss how the self-assembly of InAs QDs in MBE InAs/GaAs(001) should be properly understood in atomic scale. First, the conventional kinetic theories that have traditionally been used to interpret QD self-assembly in heteroepitaxial growth with a significant lattice mismatch are reviewed briefly by examining the literature of the past two decades. Second, based on their own experimental data, the authors point out that InAs QD self-assembly can proceed in distinctly different kinetic ways depending on the growth conditions and so cannot be framed within a universal kinetic theory, and, furthermore, that the process may be transient, or the time required for a QD to grow to maturity may be significantly short, which is obviously inconsistent with conventional kinetic theories. Third, the authors point out that, in all of these conventional theories, two well-established experimental observations have been overlooked: i) A large number of “floating” indium atoms are present on the growing surface in MBE InAs/GaAs(001); ii) an elastically strained InAs film on the GaAs(001) substrate should be mechanically unstable. These two well-established experimental facts may be highly relevant and should be taken into account in interpreting InAs QD formation. Finally, the authors speculate that the formation of an InAs QD is more likely to be a collective event involving a large number of both indium and arsenic atoms simultaneously or, alternatively, a morphological/structural transformation in which a single atomic InAs sheet is transformed into a three-dimensional InAs island, accompanied by the rehybridization from the sp2-bonded to sp3- bonded atomic configuration of both indium and arsenic elements in the heteroepitaxial growth system.

Graphical abstract

Keywords

molecular beam epitaxy / InAs quantum dots

Cite this article

Download citation ▾
Ju Wu, Peng Jin. Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy. Front. Phys., 2015, 10(1): 108101 https://doi.org/10.1007/s11467-014-0422-4

References

[1]
F. C. Frank and J. H. van der Merwe, One-dimensional dislocations (I): Static theory, Proc. R. Soc. Lond. A198(1053), 205 (1949)
CrossRef ADS Google scholar
[2]
D. Pan, E. Towe, and S. Kennerly, A five-period normalincidence (In, Ga)As/GaAs quantum-dot infrared photodetector, Appl. Phys. Lett.75(18), 2719 (1999)
CrossRef ADS Google scholar
[3]
Z. Ye, J. C. Campbell, Z. Chen, E.T. Kim, and A. Madhukar, Voltage-controllable multiwavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection, J. Appl. Phys.92(7), 4141(2002)
CrossRef ADS Google scholar
[4]
H. C. Liu, B. Aslan, J. A. Gupta, Z. R. Wasilewski, G. C. Aers, A. J. SpringThorpe, and M. Buchanan, Quantum dots for terahertz generation, J. Phys.: Condens. Matter20(38), 384211 (2008)
CrossRef ADS Google scholar
[5]
N. S. Daghestani, M. A. Cataluna, G. Berry, G. Ross, and M. J. Rose, Terahertz emission from InAs/GaAs quantum dot based photoconductive devices, Appl. Phys. Lett.98(18),181107 (2011)
CrossRef ADS Google scholar
[6]
G. Shan, X. Zhao, M. Hu, C. H. Shek, and W. Huang, Vertical-external-cavity surface-emitting lasers and quantum dot lasers, Front. Optoelectron.5(2), 157 (2012)
CrossRef ADS Google scholar
[7]
G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys.9(2), 170 (2014)
CrossRef ADS Google scholar
[8]
D. J. Eaglesham and M. Cerullo, Dislocation-free StranskiKrastanow growth of Ge on Si(100), Phys. Rev. Lett.64(16), 1943 (1990)
CrossRef ADS Google scholar
[9]
Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett.65(8), 1020 (1990)
CrossRef ADS Google scholar
[10]
C. W. Snyder, B. G. Orr, D. Kessler, and L. M. Sander, Effect of strain on surface morphology in highly strained InGaAs films, Phys. Rev. Lett.66(23), 3032 (1991)
CrossRef ADS Google scholar
[11]
D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett.63(23), 3203 (1993)
CrossRef ADS Google scholar
[12]
J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André, and O. Vatel, Self-organized growth of regular nanometerscale InAs dots on GaAs, Appl. Phys. Lett.64(2),196 (1994)
CrossRef ADS Google scholar
[13]
D. Leonard, K. Pond, and P. M. Petroff, Critical layer thickness for self-assembled InAs islands on GaAs, Phys. Rev. B50(16), 11687 (1994)
CrossRef ADS Google scholar
[14]
A. Zolotaryov, A. Schramm, Ch. Heyn, and W. Hansen, InAs-coverage dependence of self-assembled quantum dot size, composition, and density, Appl. Phys. Lett.91(8), 083107 (2007)
CrossRef ADS Google scholar
[15]
J. Wu, Y. H. Jiao, P. Jin, X. J. Lv, and Z. G. Wang, Effect of the growth mode on the two- to three-dimensional transition of InAs grown on vicinal GaAs(001) substrates, Nanotechnology18(26), 265304 (2007)
CrossRef ADS Google scholar
[16]
J. Wu, Y. P. Zeng, B. Q. Wang, J. Peng, and Z. G. Wang, Self-Assembling of InAs Quantum Dots on GaAs(001) in Molecular Beam Epitaxy Advances in Nanotechnology, edited by E. J. Chen and N. Peng, Nova Science Publishers, 2009, Vol. 1, pp 209-222
[17]
J. Wu, Y. P. Zeng, B. Q. Wang, Z. P. Zhu, and Z. G. Wang, Growth of MBE InAs/GaAs(001) quantum dots by the rapid rate, Micronanoelectronic Technology46, 79 (2009) (in Chinese)
[18]
F. Grosse and M. F. Gyure, Island and step morphology in InAs(001) homoepitaxy, Phys. Status Solidi(b) 234(1), 338 (2002)
CrossRef ADS Google scholar
[19]
M. Takahasi and J. Mizuki, X-ray diffraction study on selforganization of InAs islands on GaAs(001), J. Phys. Conf. Ser.83, 012006 (2007)
[20]
H. Metiu, Building regulations, Nature366(6451), 111 (1993)
CrossRef ADS Google scholar
[21]
Z. Zhang and M. G. Lagally, Atomistic processes in the early stages of thin-film growth, Science276(5311), 377 (1997)
CrossRef ADS Google scholar
[22]
J. V. Barth, G. Costantini, and K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature437(7059), 671 (2005)
CrossRef ADS Google scholar
[23]
J. A. Venables, Nucleation growth and pattern formation in heteroepitaxy, Physica A239(1-3), 35 (1997)
CrossRef ADS Google scholar
[24]
A. K. Bhuiyan, S. K. Dew, and M. Stepanova, Controlled self-assembly of nanocrystalline arrays studied by 3D kinetic Monte Carlo modeling, J. Phys. Chem. C115(40), 19557 (2011)
CrossRef ADS Google scholar
[25]
A. Madhukar, A unified atomistic and kinetic framework for growth front morphology evolution and defect initiation in strained epitaxy, J. Cryst. Growth163(1-2), 149 (1996)
[26]
D. D. Vvedensky, Epitaxial phenomena across length and time scales, Surf. Interface Anal.31(7), 627 (2001)
CrossRef ADS Google scholar
[27]
A. Voigt(Ed.), Multiscale Modeling in Epitaxial Growth, Birkhauser, 2005
[28]
T. Tiedje and A. Ballestad, Atomistic basis for continuum growth equation: Description of morphological evolution of GaAs during molecular beam epitaxy, Thin Solid Films516(12), 3705 (2008)
CrossRef ADS Google scholar
[29]
A. Y. Cho, Film deposition by molecular-beam techniques, J. Vac. Sci. Technol.8(5), S31 (1971)
CrossRef ADS Google scholar
[30]
M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Sudijono, L. Sander, and B. Orr, Stable and unstable growth in molecular beam epitaxy, Phys. Rev. Lett.72(1), 116 (1994)
CrossRef ADS Google scholar
[31]
C. Orme, M. D. Johnson, K. T. Leung, B. G. Orr, P. Smilauer, and D. Vvedensky, Studies of large scale unstable growth formed during GaAs(001) homoepitaxy, J. Cryst. Growth150, 128 (1995)
CrossRef ADS Google scholar
[32]
C. Orme, M. D. Johnson, J. L. Sudijono, K. T. Leung, and B. G. Orr, Large scale surface structure formed during GaAs (001) homoepitaxy, Appl. Phys. Lett.64(7), 860 (1994)
CrossRef ADS Google scholar
[33]
S. Martini, A. A. Quivy, T. E. Lamas, M. J. da Silva, E. C. F. da Silva, and J. R. Leite, Influence of indium segregation on the RHEED oscillations during the growth of InGaAs layers on a GaAs(001) surface, J. Cryst. Growth251(1-4), 101 (2003)
CrossRef ADS Google scholar
[34]
S. Martini, A. A. Quivy, T. E. Lamas, and E. da Silva, Realtime RHEED investigation of indium segregation in InGaAs layers grown on vicinal GaAs(001) substrates, Phys. Rev. B72(15), 153304 (2005)
CrossRef ADS Google scholar
[35]
R. J. Asaro and W. A. Tiller, Interface morphology development during stress corrosion cracking (Part I): Via surface diffusion, Metall. Trans.3(7), 1789 (1972)
CrossRef ADS Google scholar
[36]
M. A. Grinfeld, Instability of the Separation Boundary between a Nonhydrostatically Stressed Elastic Body and a Melt, Dokl. Akad. Nauk. SSSR290(6), 1358 (1986)
[37]
D. J. Srolovitz, On the stability of surfaces of stressed solids, Acta Metall.37(2), 621 (1989)
CrossRef ADS Google scholar
[38]
H. Gao and D. M. Nix, Surface roughening of heteroepitaxial thin films, Annu. Rev. Mater. Sci.29(1), 173 (1999)
CrossRef ADS Google scholar
[39]
B. J. Spencer and J. Tersoff, Equilibrium shapes and properties of epitaxially strained islands, Phys. Rev. Lett.79(24), 4858 (1997)
CrossRef ADS Google scholar
[40]
C. D. Rudin and B. J. Spencer, Equilibrium island ridge arrays in strained solid films, J. Appl. Phys.86(10), 5530 (1999)
CrossRef ADS Google scholar
[41]
W. T. Tekalign and B. J. Spencer, Evolution equation for a thin epitaxial film on a deformable substrate, J. Appl. Phys.96(10), 5505 (2004)
CrossRef ADS Google scholar
[42]
J. N. Aqua, T. Frisch, and A. Verga, Nonlinear evolution of a morphological instability in a strained epitaxial film, Phys. Rev. B76(16), 165319 (2007)
CrossRef ADS Google scholar
[43]
B. J. Spencer, P. W. Voorhees, and S. H. Davis, Morphological instability in epitaxially strained dislocation-free solid films: Linear stability theory, J. Appl. Phys.73(10), 4955 (1993)
CrossRef ADS Google scholar
[44]
J. E. Guyer and P. W. Voorhees, Morphological stability of alloy thin films, Phys. Rev. B54, 11710 (1996)
CrossRef ADS Google scholar
[45]
C. H. Chiu, The self-assembly of uniform heteroepitaxial islands, Appl. Phys. Lett.75(22), 3473 (1999)
CrossRef ADS Google scholar
[46]
C. H. Chiu and Z. Huang, Numerical simulation for the formation of nanostructures on the Stranski–Krastanow systems by surface undulation, J. Appl. Phys.101(11), 113540 (2007)
CrossRef ADS Google scholar
[47]
M. Levine, A. Golovin, S. Davis, and P. Voorhees, Selfassembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Phys. Rev. B75(20), 205312 (2007)
CrossRef ADS Google scholar
[48]
Y. W. Zhang, Self-organization, shape transition, and stability of epitaxially strained islands, Phys. Rev. B61(15), 10388 (2000)
CrossRef ADS Google scholar
[49]
J.Müller and M. Grant, Model of surface instabilities induced by stress, Phys. Rev. Lett.82(8), 1736 (1999)
CrossRef ADS Google scholar
[50]
Z. Suo and Z. Zhang, Epitaxial films stabilized by long-range forces, Phys. Rev. B58(8), 5116 (1998)
CrossRef ADS Google scholar
[51]
P. Liu, Y. W. Zhang, and C. Lu, Coarsening kinetics of heteroepitaxial islands in nucleationless Stranski–Krastanov growth, Phys. Rev. B68(3), 035402 (2003)
CrossRef ADS Google scholar
[52]
J. N. Aqua, and T. Frisch, Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B82(8), 085322 (2010)
CrossRef ADS Google scholar
[53]
S. P. A. Gill, An analytical model for the growth of quantum dots on ultrathin substrates, Appl. Phys. Lett.98(16), 161910 (2011)
CrossRef ADS Google scholar
[54]
M. Khenner, W. T. Tekalign, and M. S. Levine, Stability of a strongly anisotropic thin epitaxial film in a wetting interaction with elastic substrate, Europhys. Lett.93(2), 26001 (2011)
CrossRef ADS Google scholar
[55]
Y. W. Zhang and A. F. Bower, Three-dimensional analysis of shape transitions in strained-heteroepitaxial islands, Appl. Phys. Lett.78(18), 2706 (2001)
CrossRef ADS Google scholar
[56]
F. Long, S. P. A. Gill, and A. C. Cocks, Effect of surfaceenergy anisotropy on the kinetics of quantum dot formation, Phys. Rev. B64(12), 121307 (2001)
CrossRef ADS Google scholar
[57]
M. D. Korzec and P. L. Evans, From bell shapes to pyramids: A reduced continuum model for self-assembled quantum dot growth, Physica D239(8), 465 (2010)
CrossRef ADS Google scholar
[58]
C. H. Chiu, Stable and uniform arrays of self-assembled nanocrystalline islands, Phys. Rev. B69(16), 165413 (2004)
CrossRef ADS Google scholar
[59]
C. Herring, Effect of change of scale on sintering phenomena, J. Appl. Phys.21(4), 301 (1950)
CrossRef ADS Google scholar
[60]
W. W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28, 333 (1957)
CrossRef ADS Google scholar
[61]
J. W. Gibbs, The Collected Works, Thermodynamics Vol. 1, New York: Longmans Green, 1928
[62]
J. W. P. Schmelzer, On the determination of the kinetic prefactor in classical nucleation theory, J. Non-Cryst. Solids356(52-54): 2901 (2010)
CrossRef ADS Google scholar
[63]
B.V. Derjaguin, Theory of homogeneous condensation upon moderate supersaturation, Progress in Surface Science45(1-4), 1 (1994)
CrossRef ADS Google scholar
[64]
D. Kashchiev, Nucleation: Basic Theory with Applications, Oxford: Butterworth Heinemann, 2000
[65]
S. A. Kukushkin and A. V. Osipov, New phase formation on solid surfaces and thin film condensation, Prog. Surf. Sci.51(1), 1 (1996)
CrossRef ADS Google scholar
[66]
T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Metastable states of surface nanostructure arrays studied using a Fokker–Planck equation, Phys. Rev. B75(8), 085422 (2007)
CrossRef ADS Google scholar
[67]
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids19(1-2), 35 (1961)
CrossRef ADS Google scholar
[68]
C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung) [Theory of the aging of precipitates by dissolution-reprecipitation (Ostwald ripening)], Zeitschrift für Elektrochemie65(7-8), 581 (1961)
[69]
A. V. Osipov, S. A. Kukushkin, F. Schmitt, and P. Hess, Kinetic model of coherent island formation in the case of self-limiting growth, Phys. Rev. B64(20), 205421 (2001)
CrossRef ADS Google scholar
[70]
A. V. Osipov, F. Schmitt, S. A. Kukushkin, and P. Hess, Stress-driven nucleation of coherent islands: Theory and experiment, Appl. Surf. Sci.188(1-2), 156 (2002)
CrossRef ADS Google scholar
[71]
V. G. Dubrovskii, G. E. Cirlin, and V. W. Ustinov, Kinetics of the initial stage of coherent island formation in heteroepitaxial systems, Phys. Rev. B68(7), 075409 (2003)
CrossRef ADS Google scholar
[72]
V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, Effect of growth kinetics on the structural and optical properties of quantum dot ensembles, J. Cryst. Growth267(1-2), 47 (2004)
CrossRef ADS Google scholar
[73]
V. G. Dubrovskii, Calculation of the size-distribution function for quantum dots at the kinetic stage of growth, Semiconductors40(10), 1123 (2006)
CrossRef ADS Google scholar
[74]
J. Tersoff and F. K. LeGoues, Competing relaxation mechanisms in strained layers, Phys. Rev. Lett.72, 3570 (1994)
CrossRef ADS Google scholar
[75]
T. Hanada, H. Totsuka, S. K. Hong, K. Godo, K. Miyajima, T. Goto, and T. Yao, Slowdown in development of self-assembled InAs/GaAs(001) dots near the critical thickness, J. Vac. Sci. Technol. B24(4), 1886 (2006)
CrossRef ADS Google scholar
[76]
A. L. Giermann and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Appl. Phys. Lett.86(12), 121903 (2005)
CrossRef ADS Google scholar
[77]
D. T. Danielson, D. K. Sparacin, J. Michel, and L. C. Kimerling, Surface-energy-driven dewetting theory of silicon-oninsulator agglomeration, J. Appl. Phys.100(8), 083507 (2006)
CrossRef ADS Google scholar
[78]
E. Bussmann, F. Cheynis, F. Leroy, P. Müller, and O. PierreLouis, Dynamics of solid thin-film dewetting in the siliconon-insulator system, New J. Phys.13(4), 043017 (2011)
CrossRef ADS Google scholar
[79]
D. Wang and P. Schaaf, Solid-state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying, Phys. Status Solidi A210(8), 1544 (2013)
CrossRef ADS Google scholar
[80]
F. Ruffino and M. G. Grimaldi, Dewetting of templateconfined Au films on SiC surface: From patterned films to patterned arrays of nanoparticles, Vacuum99, 28 (2014)
CrossRef ADS Google scholar
[81]
H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, and W. Seifert, Mean-field theory of quantum dot formation, Phys. Rev. Lett.79(5), 897 (1997)
CrossRef ADS Google scholar
[82]
Y. Chen and J. Washburn, Structural transition in largelattice-mismatch heteroepitaxy, Phys. Rev. Lett.77(19), 4046 (1996)
CrossRef ADS Google scholar
[83]
F. M. Ross, J. Tersoff, and R. M. Tromp, Coarsening of selfassembled Ge quantum dots on Si (001), Phys. Rev. Lett.80(5), 984 (1998)
CrossRef ADS Google scholar
[84]
H. M. Koduvely and A. Zangwill, Epitaxial growth kinetics with interacting coherent islands, Phys. Rev. Lett.60(4), R2204 (1999)
[85]
D. E. Jesson, T. P. Munt, V. A. Shchcukin, and D. Bimberg, Tunable metastability of surface nanostructure arrays, Phys. Rev. Lett.92(11), 115503 (2004)
CrossRef ADS Google scholar
[86]
Y. Enomoto and M. Sawa, Simulation study on nanocluster growth deposited on a substrate, Physica A331(1-2), 189 (2004)
CrossRef ADS Google scholar
[87]
M. Fanfoni and M. Tomellini, Film growth viewed as stochastic dot processes, J. Phys.: Condens. Matter17(17), R571 (2005)
CrossRef ADS Google scholar
[88]
H. Z. Song, T. Usuki, Y. Nakata, N. Yokoyama, H. Sasakura, and S. Muto, Formation of InAs/GaAs quantum dots from a subcritical InAs wetting layer: A reflection high-energy electron diffraction and theoretical study, Phys. Rev. B73(11), 115327 (2006)
CrossRef ADS Google scholar
[89]
M. Fanfoni, E. Placidi, F. Arciprete, E. Orsini, F. Patella, and A. Balzarotti, Sudden nucleation versus scale invariance of InAs quantum dots on GaAs, Phys. Rev. B75(24), 245312 (2007)
CrossRef ADS Google scholar
[90]
K. A. Nevalainen, M. Rusanen, and I. T. Koponen, Size selected growth of nanodots: Effects of growth kinetics and energetics on the formation of stationary size distributions, Eur. Phys. J. B56(4), 311 (2007)
CrossRef ADS Google scholar
[91]
F. Ratto and F. Rosei, Order and disorder in the heteroepitaxy of semiconductor nanostructures, Mater. Sci. Eng. Rep.70(3-6), 243 (2010)
CrossRef ADS Google scholar
[92]
Ch. Heyn, Critical coverage for strain-induced formation of InAs quantum dots, Phys. Rev. B64(16), 165306 (2001)
CrossRef ADS Google scholar
[93]
J. A. Venables, G. D. T.Spiller, and M. Hanbuchen, Nucleation and growth of thin films, Rep. Prog. Phys.47(4), 399 (1984)
CrossRef ADS Google scholar
[94]
M. Itoh, Atomic-scale homoepitaxial growth simulations of reconstructed III–V surfaces, Prog. Surf. Sci.66(3-5), 53 (2001)
[95]
J. W. Evans, P. A. Thiel, and M. C. Bartelt, Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds, Surf. Sci. Rep.61(1-2), 1 (2006)
CrossRef ADS Google scholar
[96]
G. S. Bales and D. C. Chrzan, Dynamics of irreversible island growth during submonolayer epitaxy, Phys. Rev. B50(9), 6057 (1994)
CrossRef ADS Google scholar
[97]
M. Körner, M. Einax, and P. Maass, Island size distributions in submonolayer growth: Prediction by mean field theory with coverage dependent capture number, Phys. Rev. B82(20), 201401(R) (2010)
[98]
M. Körner, M. Einax, and P. Maass, Capture numbers and island size distributions in models of submonolayer surface growth, Phys. Rev. B86(8), 085403 (2012)
CrossRef ADS Google scholar
[99]
J. G. Amar, F. Family, and P. M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B50(12), 8781 (1994)
CrossRef ADS Google scholar
[100]
D. R. Frankl and J. A. Venables, Nucleation on substrates from the vapour phase, Adv. Phys.19(80), 409 (1970)
CrossRef ADS Google scholar
[101]
T. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett.47(19), 1400 (1981)
CrossRef ADS Google scholar
[102]
P. Meakin, Formation of fractal clusters and networks by irreversible diffusion-limited aggregation, Phys. Rev. Lett.51(13), 1119 (1983)
CrossRef ADS Google scholar
[103]
M. Kolb, R. Botet, and R. Jullien, Scaling of kinetically growing clusters, Phys. Rev. Lett.51(13), 1123 (1983)
CrossRef ADS Google scholar
[104]
A. Y. Menshutin and L. N. Shchur, Morphological diagram of diffusion driven aggregate growth in plane: Competition of anisotropy and adhesion, Comput. Phys. Commun.182(9), 1819 (2011)
CrossRef ADS Google scholar
[105]
Z. Rácz and T. Vicsek, Diffusion-controlled deposition: Cluster statistics and scaling, Phys. Rev. Lett.51(26), 2382 (1983)
CrossRef ADS Google scholar
[106]
T. Vicsek and F. Family, Dynamic scaling for aggregation of clusters, Phys. Rev. Lett.52(19), 1669 (1983)
CrossRef ADS Google scholar
[107]
W. W. Mullins, The statistical self-similarity hypothesis in grain growth and particle coarsening, J. Appl. Phys.59(4), 1341 (1986)
CrossRef ADS Google scholar
[108]
F. Family and P. Meakin, Scaling of the droplet-size distribution in vapor-deposited thin films, Phys. Rev. Lett.61(4), 428 (1988)
CrossRef ADS Google scholar
[109]
F. Family and P. Meakin, Kinetics of droplet growth processes: Simulations, theory, and experiments, Phys. Rev. A40(7), 3836 (1989)
CrossRef ADS Google scholar
[110]
M. Zinke-Allmang, L. C. Feldman, and W. van Saarloos, Experimental study of self-similarity in the coalescence growth regime, Phys. Rev. Lett.68(15), 2358 (1992)
CrossRef ADS Google scholar
[111]
J. G. Amar, F. Family, and P. M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B50(12), 8781 (1994)
CrossRef ADS Google scholar
[112]
J. G. Amar and F. Family, Kinetics of submonolayer and multilayer epitaxial growth, Thin Solid Films272(2), 208(1996)
CrossRef ADS Google scholar
[113]
J. W. Evans and M. C. Bartelt, Nucleation, adatom capture, and island size distributions: Unified scaling analysis for submonolayer deposition, Phys. Rev. B63(23), 235408 (2001)
CrossRef ADS Google scholar
[114]
J. W. Evans and M. C. Bartelt, Island sizes and capture zone areas in submonolayer deposition: Scaling and factorization of the joint probability distribution, Phys. Rev. B66(23), 235410 (2002)
CrossRef ADS Google scholar
[115]
J. A. Stroscio and D. T. Pierce, Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy, Phys. Rev. B49(12), 8522 (1994)
CrossRef ADS Google scholar
[116]
V. Bressler-Hill, S. Varma, A. Lorke, B. Z. Nosho, P. Petroff, and W. Weinberg, Island scaling in strained heteroepitaxy: InAs/GaAs(001), Phys. Rev. Lett.74(16), 3209 (1995)
CrossRef ADS Google scholar
[117]
G. R . Bell, T. J. Krzyzewski, P. B. Joyce, and T. S. Jones, Island size scaling for submonolayer growth of InAs on GaAs (001)- (2×4): Strain and surface reconstruction effects, Phys. Rev. B61(16), R10551 (2000)
CrossRef ADS Google scholar
[118]
C. Ratsch, A. Zangwill, P. Smilauer, and D. D. Vvedensky, Saturation and scaling of epitaxial island densities, Phys. Rev. Lett.72(20), 3194 (1994)
CrossRef ADS Google scholar
[119]
J. G. Amar and F. Family, Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth, Phys. Rev. Lett.74(11), 2066 (1995)
CrossRef ADS Google scholar
[120]
P. A. Mulheran and J. A. Blackman, The origins of island size scaling in heterogeneous film growth, Philos. Mag. Lett.72(1), 55 (1995)
CrossRef ADS Google scholar
[121]
P. A. Mulheran and J. A. Blackman, Capture zones and scaling in homogeneous thin-film growth, Phys. Rev. B53(15), 10261 (1996)
CrossRef ADS Google scholar
[122]
F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. Kulkarni, S. Heun, and F. Rosei, Diffusion dynamics during the nucleation and growth of Ge/Si nanostructures on Si(111), Phys. Rev. Lett.96(9), 096103 (2006)
CrossRef ADS Google scholar
[123]
G. S. Solomon, J. A. Trezza, and J. S. Harris, Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs, Appl. Phys. Lett.66(8), 991 (1995)
CrossRef ADS Google scholar
[124]
R. Leon, T. J. Senden, Y. Kim, C. Jagadish, and A. Clark, Nucleation transitions for InGaAs islands on vicinal (100) GaAs, Phys. Rev. Lett.78(26), 4942 (1997)
CrossRef ADS Google scholar
[125]
K. Shiramine, T. Itoh, and S. Muto, Critical cluster size of InAs quantum dots formed by Stranski–Krastanow mode, J. Vac. Sci. Technol. B22(2), 642 (2004)
CrossRef ADS Google scholar
[126]
F. Arciprete, E. Placidi, V. Sessi, M. Fanfoni, F. Patella, and A. Balzarotti, How kinetics drives the two- to three-dimensional transition in semiconductor strained heterostructures: The case of InAs/GaAs(001), Appl. Phys. Lett.89(4), 041904 (2006)
CrossRef ADS Google scholar
[127]
Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, and N. Yokoyama, Island size scaling in InAs/GaAs self-assembled quantum dots, Phys. Rev. Lett.80(12), 2650 (1998)
CrossRef ADS Google scholar
[128]
T. J. Krzyzewski, P. B. Joyce, G. R. Bell, and T. S. Jones, Understanding the growth mode transition in InAs/GaAs(001) quantum dot formation, Surf. Sci.532-535, 822 (2003)
CrossRef ADS Google scholar
[129]
T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Manipulating the size distributions of quantum dots associated with strain-renormalized surface energy, Appl. Phys. Lett.85(10), 1784(2004)
CrossRef ADS Google scholar
[130]
K. Pirkkalainen, K. A. Riekki, and I. T. Koponen, Two computational methods for describing size selected nanocluster growth and obtaining accurate cluster size distributions, Comput. Mater. Sci.43(2), 325 (2008)
CrossRef ADS Google scholar
[131]
K. Pirkkalainen, K. A. Nevalainen, and I. T. Koponen, Computational methods for mesoscopic modelling of sizeselection in nanoisland growth, J. Phys.: Conf. Ser.100(7), 072004 (2008)
[132]
K. A. Riekki, Size selected growth of nanodots: Analytical prediction for the selected size, Eur. Phys. J. B85(6), 185, 2012
CrossRef ADS Google scholar
[133]
G. S. Bales and A. Zangwill, Self-consistent rate theory of submonolayer homoepitaxy with attachment/detachment kinetics, Phys. Rev. B55(4), R1973 (1997)
CrossRef ADS Google scholar
[134]
H. A. Atwater and C. M. Yang, Island growth and coarsening in thin films — conservative and nonconservative systems, J. Appl. Phys.67(10), 6202 (1990)
CrossRef ADS Google scholar
[135]
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, Cambridge: Cambridge University Press, 1992
[136]
J. W. Christian, The Theory of Transformations in Metals and Alloys, Part I, New York: Pergamon Press, 2002
[137]
E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Oxford: Butterworth-Heinemann, 1981
[138]
T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Manipulating the size distributions of quantum dots associated with strain-renormalized surface energy, Appl. Phys. Lett.85(10), 1784 (2004)
CrossRef ADS Google scholar
[139]
D. J. Vine, D. E. Jesson, M. J. Morgan, V. Shchukin, and D. Bimberg, Shape transitions of metastable surface nanostructures, Phys. Rev. B72(24), 241304 (2005)
CrossRef ADS Google scholar
[140]
R. Bergamaschini, M. Brehm, M. Grydlik, T. Fromherz, G. Bauer, and F. Montalenti, Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001), Nanotechnology22(28), 285704 (2011)
CrossRef ADS Google scholar
[141]
C. Misbah, O. Pierre-Louis, and Y. Saito, Crystal surfaces in and out of equilibrium: A modern view, Rev. Mod. Phys.82(1), 981, (2010)
CrossRef ADS Google scholar
[142]
T. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett.47(19), 1400 (1981)
CrossRef ADS Google scholar
[143]
G. H. Gilmer, M. H. Grabow, and A. F. Bakker, Modeling of epitaxial growth, Mater. Sci. Eng. B6(2-3), 101 (1990)
CrossRef ADS Google scholar
[144]
D. D. Vvedensky, Epitaxial phenomena across length and time scales, Surf. Interface Anal.31(7), 627 (2001)
CrossRef ADS Google scholar
[145]
R. E. Caflisch, Growth, structure and pattern formation for thin films, J. Sci. Comput.37(1), 3 (2008)
CrossRef ADS Google scholar
[146]
K. Pirkkalainen and I. T. Koponen, Computational study on tuning the 2D self-assembly of metallic nanoclusters, Surf. Sci.604(11-12), 951 (2010)
CrossRef ADS Google scholar
[147]
B. A. Joyce and D. D. Vvedensky, Self-organized growth on GaAs surfaces, Mater. Sci. Eng. Rep.46(6), 127 (2004)
CrossRef ADS Google scholar
[148]
P. P. Petrov and W. Miller, Fast kinetic Monte Carlo simulation and statistics of quantum dot arrays, Surf. Sci.621, 175 (2014)
CrossRef ADS Google scholar
[149]
E. Schöll and B. Bose, Kinetic Monte Carlo simulation of the nucleation stage of the self-organized growth of quantum dots, Solid-State Electron.42(7-8), 1587 (1998)
[150]
G. Russo and P. Smereka, Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo, J. Comput. Phys.214(2), 809 (2006)
CrossRef ADS Google scholar
[151]
T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Solids57(3), 521 (2009)
CrossRef ADS Google scholar
[152]
B. G. Orr, D. A. Kessler, C. W. Snyder, and L. M. Sander, A model for strain-induced roughening and coherent island growth, Europhys. Lett.19(1), 33 (1992)
CrossRef ADS Google scholar
[153]
C. H. Lam, C. K. Lee, and L. M. Sander, Competing roughening mechanisms in strained heteroepitaxy: A fast kinetic Monte Carlo study, Phys. Rev. Lett.89(21), 216102 (2002)
CrossRef ADS Google scholar
[154]
M. T. Lung, C. H. Lam, and L. M. Sander, Island, pit, and groove formation in strained heteroepitaxy, Phys. Rev. Lett.95(8), 086102 (2005)
CrossRef ADS Google scholar
[155]
T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Solids57(3), 521 (2009)
CrossRef ADS Google scholar
[156]
F. Much and M. Biehl, Simulation of wetting-layer and island formation in heteroepitaxial growth, Europhys. Lett.63, 14 (2003)
CrossRef ADS Google scholar
[157]
J. Y. Guo, Y. W. Zhang, and C. Lu, Effects of wetting and misfit strain on the pattern formation of heteroepitaxially grown thin films, Comput. Mater. Sci.44(1), 174 (2008)
CrossRef ADS Google scholar
[158]
P. Gaillard, J. N. Aqua, and T. Frisch, Kinetic Monte Carlo simulations of the growth of silicon germanium pyramids, Phys. Rev. B87(12), 125310 (2013)
CrossRef ADS Google scholar
[159]
G. Russo and P. Smereka, Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo, J. Comput. Phys.214(2), 809 (2006)
CrossRef ADS Google scholar
[160]
J. N. Aqua and T. Frisch, Elastic interactions and kinetics during reversible submonolayer growth: Monte Carlo simulations, Phys. Rev. B78(12), 121305 (2008)
CrossRef ADS Google scholar
[161]
R. Stumpf and M. Scheffler, Theory of self-diffusion at and growth of Al(111), Phys. Rev. Lett.72(2), 254 (1994)
CrossRef ADS Google scholar
[162]
R. Stumpf and M. Scheffler, Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of Al and their implications on crystal growth, Phys. Rev. B53(8), 4958 (1996)
CrossRef ADS Google scholar
[163]
B. D. Yu and M. Scheffler, Anisotropy of growth of the closepacked surfaces of silver, Phys. Rev. Lett.77(6), 1095 (1996)
CrossRef ADS Google scholar
[164]
A. Bogicevic, J. Strömquist, and B. Lundqvist, Lowsymmetry diffusion barriers in homoepitaxial growth of Al(111), Phys. Rev. Lett.81(3), 637 (1998)
CrossRef ADS Google scholar
[165]
A. La Magna, Nanoisland shape relaxation mechanism, Surf. Sci.601(2), 308 (2007)
CrossRef ADS Google scholar
[166]
K. Thürmer, J. E. Reutt-Robey, and E. D. Williams, Nucleation limited crystal shape transformations, Surf. Sci.537(1-3), 123 (2003)
CrossRef ADS Google scholar
[167]
C. Herring, in: Structure and Properties of Solid Surfaces, edited by R. Gomer and C. S. Smith, Chicago: The University of Chicago Press, 1952, pp 5-81
[168]
W. W. Mullins and G. S. Rohrer, Nucleation barrier for volume-conserving shape changes of faceted crystals, J. Am. Ceram. Soc.83(1), 214 (2000)
CrossRef ADS Google scholar
[169]
G. S. Rohrer, C. L. Rohrer, and W. W. Mullins, Nucleation energy barriers for volume-conserving shape changes of crystals with nonequilibrium morphologies, J. Am. Ceram. Soc.84(9), 2099 (2001)
CrossRef ADS Google scholar
[170]
N. Combe, P. Jensen, and A. Pimpinelli, Changing shapes in the nanoworld, Phys. Rev. Lett.85(1), 110 (2000)
CrossRef ADS Google scholar
[171]
D. N. McCarthy and S. A. Brown, Evolution of neck radius and relaxation of coalescing nanoparticles, Phys. Rev. B80, 064107 (2009)
CrossRef ADS Google scholar
[172]
F. Family and T. Vicsek, in: Dynamics of Fractal Surfaces, Singapore: World Scientific Press, 1991
[173]
A. L. Barabasi and H. E. Stanly, Fractal Concepts in Surface Growth, New York: Cambridge University Press, 1995
CrossRef ADS Google scholar
[174]
P. Meakin, Fractals, Scaling and Growth Far from Equilibrium, Cambridge: Cambridge University Press, 1998
[175]
F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, J. Phys. Math. Gen.18(2), L75 (1985)
CrossRef ADS Google scholar
[176]
H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Nørskov, Effect of strain on surface diffusion and nucleation, Phys. Rev. B52(20), R14380 (1995)
[177]
J. Krug, Four lectures on the physics of crystal growth, Physica A313(1-2): 47, 2002
[178]
P. P. Chatraphorn, Z. Toroczkai, and S. Das Sarma, Epitaxial mounding in limited-mobility models of surface growth, Phys. Rev. B64(20), 205407 (2001)
CrossRef ADS Google scholar
[179]
K. J. Caspersen, A. R. Layson, C. R. Stoldt, V. Fournee, P. Thiel, and J. Evans, Development and ordering of mounds during metal(100) homoepitaxy, Phys. Rev. B65(19), 193407 (2002)
CrossRef ADS Google scholar
[180]
F. F. Leal, S. C. Ferreira, and S. O. Ferreira, Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height, J. Phys.: Condens. Matter23(29), 292201 (2011)
CrossRef ADS Google scholar
[181]
R. L. Schwoebel and E. J. Shipsey, Step motion on crystal surfaces, J. Appl. Phys.37(10), 3682 (1966)
CrossRef ADS Google scholar
[182]
R. L. Schwoebel, Step motion on crystal surfaces (II), J. Appl. Phys.40(2), 614 (1969)
CrossRef ADS Google scholar
[183]
J. Villain, Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. I1(1), 19 (1991)
CrossRef ADS Google scholar
[184]
J. G. Amar and F. Family, Step-adatom attraction as a new mechanism for instability in epitaxial growth, Phys. Rev. Lett.77(22), 4584 (1996)
CrossRef ADS Google scholar
[185]
D. V. Brunev, I. G. Neizvestny, N. L. Shwartz, and Z. S. Yanovitskaja, Schwoebel barriers and quantum dot lateral size equalization during epitaxial growth, Nanotechnology12(4), 413 (2001)
CrossRef ADS Google scholar
[186]
R. Zhu, E. Pan, and P. W. Chung, Fast multiscale kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands, Phys. Rev. B75(20), 205339 (2007)
CrossRef ADS Google scholar
[187]
Z. Y. Zhang, J. Detch, and H. Metiu, Surface roughness in thin-film growth: The effect of mass transport between layers, Phys. Rev. B48(7), 4972 (1993)
CrossRef ADS Google scholar
[188]
M. Kalff, P. Smilauer, G. Comsa, and T. Michely, No coars-ěning in Pt(111) homoepitaxy, Surf. Sci.426(3), L447 (1999)
CrossRef ADS Google scholar
[189]
B. Yang, Elastic energy release rate of quantum islands in Stranski–Krastanow growth, J. Appl. Phys.92(7), 3704 (2002)
CrossRef ADS Google scholar
[190]
C. Ratsch, J. DeVita, and P. Smereka, Level-set simulation for the strain-driven sharpening of the island-size distribution during submonolayer heteroepitaxial growth, Phys. Rev. B80(15), 155309 (2009)
CrossRef ADS Google scholar
[191]
A. C. Schindler, M. F. Gyure, G. D. Simms, D. Vvedensky, R. Caflisch, C. Connell, and E. Luo, Theory of strain relaxation in heteroepitaxial systems, Phys. Rev. B67(7), 075316 (2003)
CrossRef ADS Google scholar
[192]
C. Ratsch, P. Smilauer, D. D. Vvedensky, and A. Zangwill, Mechanism for coherent island formation during heteroepitaxy, J. Phys. I6, 575 (1996)
CrossRef ADS Google scholar
[193]
P. Nath and M. Ranganathan, Kinetic Monte Carlo simulations of heteroepitaxial growth with an atomistic model of elasticity, Surf. Sci.606(17-18), 1450 (2012)
CrossRef ADS Google scholar
[194]
V. I. Tokar and H. Dreyssé, Nucleation of size calibrated three-dimensional nanodots in atomistic model of strained epitaxy: A Monte Carlo study, J. Phys.: Condens. Matter25(4), 045001 (2013)
CrossRef ADS Google scholar
[195]
F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Nanocrystal formation and faceting instability in Al(110) homoepitaxy: True upward adatom diffusion at step edges and island corners, Phys. Rev. Lett.91(1), 016102 (2003)
CrossRef ADS Google scholar
[196]
K. Fichthorn and M. Scheffler, Nanophysics: A step up to self-assembly, Nature429(6992), 617 (2004)
CrossRef ADS Google scholar
[197]
W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. Wang, and Z. Zhang, Adatom ascending at step edges and faceting on fcc metal (110) surfaces, Phys. Rev. Lett.92(10), 106102 (2004)
CrossRef ADS Google scholar
[198]
H. Yang, Q. Sun, Z. Zhang, and Y. Jia, Upward self-diffusion of adatoms and small clusters on facets of fcc metal (110) surfaces, Phys. Rev. B76(11), 115417 (2007)
CrossRef ADS Google scholar
[199]
Z. Zhang, Q. Niu, and C. K. Shih, Electronic growth of metallic overlayers on semiconductor substrates, Phys. Rev. Lett.80(24), 5381 (1998)
CrossRef ADS Google scholar
[200]
K. Budde, E. Abram, V. Yeh, and M. C. Tringides, Uniform, self-organized, seven-step height Pb/Si(111)-(7 × 7) islands at low temperatures, Phys. Rev. B61(16), R10602 (2000)
CrossRef ADS Google scholar
[201]
K. L. Man, M. C. Tringides, M. M. T. Loy, and M. Altman, Superdiffusive motion of the Pb wetting layer on the Si(111) surface, Phys. Rev. Lett.110(3), 036104 (2013)
CrossRef ADS Google scholar
[202]
M. Hupalo and M. C. Tringides, Ultrafast kinetics in Pb/Si(111) from the collective spreading of the wetting layer, Phys. Rev. B75(23), 235443 (2007)
CrossRef ADS Google scholar
[203]
W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London A243, 299 (1951)
CrossRef ADS Google scholar
[204]
H. C. Jeong and E. D. Williams, Steps on surfaces: Experiment and theory, Surf. Sci. Rep.34(6-8): 171 (1999)
CrossRef ADS Google scholar
[205]
N. Israeli and D. Kandel, Profile of a decaying crystalline cone, Phys. Rev. B60(8), 5946 (1999)
CrossRef ADS Google scholar
[206]
E. Korutcheva, A. M. Turiel, and I. Markov, Coherent Stranski–Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study, Phys. Rev. B61(24), 16890 (2000)
CrossRef ADS Google scholar
[207]
K. E. Khor and S. Das Sarma, Quantum dot self-assembly in growth of strained-layer thin films: A kinetic Monte Carlo study, Phys. Rev. B62(24), 16657 (2000)
CrossRef ADS Google scholar
[208]
J. E. Prieto and I. Markov, Thermodynamic driving force of formation of coherent three-dimensional islands in Stranski–Krastanov growth, Phys. Rev. B66(7), 073408 (2002)
CrossRef ADS Google scholar
[209]
J. E. Prieto and I. Markov, Quantum-dot nucleation in strained-layer epitaxy: Minimum-energy pathway in the stress-driven two-dimensional to three-dimensional transformation, Phys. Rev. B72(20), 205412 (2005)
CrossRef ADS Google scholar
[210]
R. Xiang, M. T. Lung, and C. H. Lam, Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy, Phys. Rev. E82(2), 021601 (2010)
CrossRef ADS Google scholar
[211]
J. E. Prieto and I. Markov, Second-layer nucleation in coherent Stranski–Krastanov growth of quantum dots, Phys. Rev. B84(19), 195417 (2011)
CrossRef ADS Google scholar
[212]
K. M. Chen, D. Jesson, S. Pennycook, T. Thundat, and R. Warmack, Critical nuclei shapes in the stress-driven 2D-to-3D transition, Phys. Rev. B56(4), R1700 (1997)
CrossRef ADS Google scholar
[213]
P. Sutter and M. G. Lagally, Nucleationless threedimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett.84(20), 4637 (2000)
CrossRef ADS Google scholar
[214]
P. Kratzer, Q. K. K. Liu, P. Acosta-Diaz, C. Manzano, G. Costantini, R. Songmuang, A. Rastelli, O. Schmidt, and K. Kern, Shape transition during epitaxial growth of InAs quantum dots on GaAs(001): Theory and experiment, Phys. Rev. B73(20), 205347 (2006)
CrossRef ADS Google scholar
[215]
D. J. Jesson, G. Chen, K. Chen, and S. Pennycook, Selflimiting growth of strained faceted islands, Phys. Rev. Lett.80(23), 5156 (1998)
CrossRef ADS Google scholar
[216]
M. Kästner and B. Voigtländer, Kinetically self-limiting growth of Ge Islands on Si(001), Phys. Rev. Lett.82(13), 2745 (1999)
CrossRef ADS Google scholar
[217]
J. Johansson and W. Seifert, Kinetics of self-assembled island formation: Part II – Island size, J. Cryst. Growth234(1), 139 (2002)
CrossRef ADS Google scholar
[218]
F. Montalenti, P. Raiteri, D. B. Migas, H. von Känel, A. Rastelli, C. Manzano, G. Costantini, U. Denker, O. Schmidt, K. Kern, and L. Miglio, Atomic-scale pathway of the pyramid-to-dome transition during Ge growth on Si (001), Phys. Rev. Lett.93(21), 216102 (2004)
CrossRef ADS Google scholar
[219]
H. Eisele, A. Lenz, R. Heitz, R. Timm, M. Dähne, Y. Temko, T. Suzuki, and K. Jacobi, Change of InAs/GaAs quantum dot shape and composition during capping, J. Appl. Phys.104(12), 124301 (2008)
CrossRef ADS Google scholar
[220]
A. Rastelli, H. Von Känel, B. Spencer, and J. Tersoff, Prepyramid-to-pyramid transition of SiGe islands on Si(001), Phys. Rev. B68(11), 115301 (2003)
CrossRef ADS Google scholar
[221]
A. Vailionis, B. Cho, G. Glass, P. Desjardins, David G. Cahill, and J. E. Greene, Pathway for the strain-driven twodimensional to three-dimensional transition during growth of Ge on Si(001), Phys. Rev. Lett.85, 3672 (2000)
CrossRef ADS Google scholar
[222]
B. J. Spencer and J. Tersoff, Symmetry breaking in shape transitions of epitaxial quantum dots, Phys. Rev. B87(16), 161301 (2013)
CrossRef ADS Google scholar
[223]
X. B. Niu, G. B. Stringfellow, and F. Liu, Nonequilibrium composition profiles of alloy quantum dots and their correlation with the growth mode, Phys. Rev. Lett.107(7), 076101 (2011)
CrossRef ADS Google scholar
[224]
T. P. Schulze and P. Smereka, Kinetic Monte Carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings, Phys. Rev. B86(23), 235313 (2012)
CrossRef ADS Google scholar
[225]
F. Watanabe, D. G. Cahill, and J. E. Greene, Roughening rates of strained-layer instabilities, Phys. Rev. Lett.94(6), 066101 (2005)
CrossRef ADS Google scholar
[226]
M. A. Grinfeld, Instability of the separation boundry between a nonhydrostatically stressed elastic body and a melt, Sov. Phys. Dokl.31, 831 (1986)
[227]
D. J. Srolovitz, On the stability of surfaces of stressed solids, Acta Metall.37(2), 621 (1989)
CrossRef ADS Google scholar
[228]
O. Pierre-Louis, A. Chame, and Y. Saito, Dewetting of a solid monolayer, Phys. Rev. Lett.99(13), 136101 (2007)
CrossRef ADS Google scholar
[229]
K. Thurmer and N. C. Bartelt, Nucleation-limited dewetting of ice films on Pt(111), Phys. Rev. Lett.100(18), 186101 (2008)
CrossRef ADS Google scholar
[230]
K. Thürmer, J. E. Reutt-Robey, and E. D. Williams, Nucleation limited crystal shape transformations, Surf. Sci.537(1-3), 123 (2003)
CrossRef ADS Google scholar
[231]
R. F. Strickland, Constable, Kinetics and Mechanism of Crystallization, New York: Academic Press, 1968
[232]
C. Herring, Some theorems on the free energies of crystal surfaces, Phys. Rev.82(1), 87 (1951)
CrossRef ADS Google scholar
[233]
A. F. Andreev, Faceting phase transitions of crystals, Sov. Phys. JETP53, 1063 (1981)
[234]
F. Cheynis, E. Bussmann, F. Leroy, T. Passanante, and P. Mülle, Dewetting dynamics of silicon-on-insulator thin films, Phys. Rev. B84(24), 245439 (2011)
CrossRef ADS Google scholar
[235]
F. Leroy, F. Cheynis, T. Passante, and P. Müller, Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts, Phys. Rev. B85(19), 195414 (2012)
CrossRef ADS Google scholar
[236]
F. Baletto and R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys.77(1), 371 (2005)
CrossRef ADS Google scholar
[237]
W. Li, J. S. Lin, M. Karimi, C. Moses, and G. Vidali, Structural characterization of ultra-thin metal overlayers on Cu(001) by atom beam scattering, Appl. Surf. Sci.48-49, 160 (1991)
CrossRef ADS Google scholar
[238]
W. Li, G. Vidali, and O. Biham, Scaling of island growth in Pb overlayers on Cu(001), Phys. Rev. B48(11), 8336 (1993)
CrossRef ADS Google scholar
[239]
B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, An atomic-level view of melting using femtosecond electron diffraction, Science302(5649), 1382 (2003)
CrossRef ADS Google scholar
[240]
C. V. Shank, R. Yen, and C. Hirlimann, Timeresolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon, Phys. Rev. Lett.50(6), 454 (1983)
CrossRef ADS Google scholar
[241]
G. Sciaini and R. J. D. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics, Rep. Prog. Phys.74(9), 096101 (2011)
CrossRef ADS Google scholar
[242]
M. J. Aziz, Model for solute redistribution during rapid solidification, J. Appl. Phys.53(2), 1158 (1982)
CrossRef ADS Google scholar
[243]
R. Willnecker, D. M. Herlach, and B. Feuerbacher, Grain refinement induced by a critical crystal growth velocity in undercooled melts, Appl. Phys. Lett.56(4), 324 (1990)
CrossRef ADS Google scholar
[244]
W. G. Burgers, On the process of transition of the cubicbody-centered modification into the hexagonal-close-packed modification of zirconium, Physica1(7-12), 561 (1934)
[245]
J. A. Hawreliak, B. El-Dasher, H. Lorenzana, G. Kimminau, A. Higginbotham, B. Nagler, S. M. Vinko, W. J. Murphy, T. Whitcher, J. S. Wark, S. Rothman, and N. Park, In situ X-ray diffraction measurements of the c/a ratio in the highpressure ϵ phase of shock-compressed polycrystalline iron, Phys. Rev. B83(14), 144114 (2011)
CrossRef ADS Google scholar
[246]
B. Dupé, B. Amadon, Y. P. Pellegrini, and C. Denoual, Mechanism for the α → ϵ phase transition in iron, Phys. Rev. B87(2), 024103 (2013)
CrossRef ADS Google scholar
[247]
T. Kudo, T. Inoue, T. Kita, and O. Wada, Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image, J. Appl. Phys.104(7), 074305 (2008)
CrossRef ADS Google scholar
[248]
A. Feltrin and A. Freundlich, RHEED metrology of Stranski–Krastanov quantum dots, J. Cryst. Growth301-302, 38 (2007)
[249]
A. Freundlich and C. Rajapaksha, Quantum dots and nanostructures: Synthesis, characterization, and modeling VIII, Proc. SPIE7947, 79470P (2011)
[250]
M. Yakimov, V. Tokranov, G. Agnello, J. van Eisden, and S. Oktyabrsky, In situ monitoring of formation of InAs quantum dots and overgrowth by GaAs or AlAs, J. Vac. Sci. Technol. B23(3), 1221 (2005)
CrossRef ADS Google scholar
[251]
K. Shimomura, T. Shirasaka, D. M. Tex, F. Yamada and I. Kamiya, RHEED transients during InAs quantum dot growth by MBE, J. Vac. Sci. Technol. B30, 02B128 (2012)
[252]
J. M. Gérard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouché, and F. Barthe, Optical investigation of the selforganized growth of InAs/GaAs quantum boxes, J. Cryst. Growth150, 351 (1995)
CrossRef ADS Google scholar
[253]
M. Takahasi, T. Kaizu, and J. Mizuki, In situ monitoring of internal strain and height of InAs nanoislands grown on GaAs(001), Appl. Phys. Lett.88(10), 101917 (2006)
CrossRef ADS Google scholar
[254]
G. R. Bell, M. Pristovsek, T. Tsukamoto, B. G. Orr, Y. Arakawa, and N. Koguchi, In situ scanning tunneling microscopy of InAs quantum dots on GaAs(0 0 1) during molecular beam epitaxial growth, Surf. Sci.544(2-3), 234 (2003)
CrossRef ADS Google scholar
[255]
S. Tsukamoto, T. Honma, G. R. Bell, A. Ishii, and Y. Arakawa, Atomistic insights for InAs quantum dot formation on GaAs(001) using STM within a MBE growth chamber, Small2(3), 386 (2006)
CrossRef ADS Google scholar
[256]
H. R. Eisenberg and D. Kandel, Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett.85(6), 1286 (2000)
CrossRef ADS Google scholar
[257]
P. Müller and R. Kern, The physical origin of the twodimensional towards three-dimensional coherent epitaxial Stranski-Krastanov transition, Appl. Surf. Sci.102, 6 (1996)
CrossRef ADS Google scholar
[258]
J. Tersoff, Stress-induced layer-by-layer growth of Ge on Si(100), Phys. Rev. B43(11), 9377 (1991)
CrossRef ADS Google scholar
[259]
M. J. Beck, A. van de Walle, and M. Asta, Surface energetics and structure of the Ge wetting layer on Si(100), Phys. Rev. B70(20), 205337 (2004)
CrossRef ADS Google scholar
[260]
M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Schäffler, L. Miglio, and G. Bauer, Key role of the wetting layer in revealing the hidden path of Ge/Si(001) Stranski–Krastanow growth onset, Phys. Rev. B80(20), 205321 (2009)
CrossRef ADS Google scholar
[261]
I. Daruka and A. L. Barabási, Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium, Phys. Rev. Lett.79(19), 3708 (1997)
CrossRef ADS Google scholar
[262]
C. Chiu, Z. Huang, and C. T. Poh, Formation of nanostructures by the activated Stranski–Krastanow transition method, Phys. Rev. Lett.93(13), 136105 (2004)
CrossRef ADS Google scholar
[263]
D. V. Yurasov and Y. N. Drozdov, Critical thickness for the Stranski–Krastanov transition treated with the effect of segregation, Semiconductors42(5), 563 (2008)
CrossRef ADS Google scholar
[264]
H. R. Eisenberg and D. Kandel, Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett.85(6), 1286 (2000)
CrossRef ADS Google scholar
[265]
C. H. Chiu and H. Gao, in: Thin Films: Stresses and Mechanical Properties V, edited by S. P. Baker, et al., MRS Symposia Proceedings No. 356, Pittsburgh: Materials Research Society, 1995, page 33
[266]
R. V. Kukta and L. B. Freund, in: Thin Films: Stresses and Mechanical Properties VI, edited by W. W. Gerberich, et al., MRS Symposia Proceedings No. 436, Pittsburgh: Materials Research Society, 1997, page 493
[267]
B. J. Spencer, Asymptotic derivation of the glued-wettinglayer model and contact-angle condition for Stranski–Krastanow islands, Phys. Rev. B59(3), 2011 (1999)
CrossRef ADS Google scholar
[268]
S. M. Shivaprasad, S. Bera, and Y. Aparna, The epitaxial growth of Ag on Si(111)-(7 × 7) surface and its ( √3 × √3)- R30 surface phase transformation, Bull. Mater. Sci.21(2), 111 (1998)
CrossRef ADS Google scholar
[269]
S. Åozkaya, M. Çäkmak, and B. Alkan, Atomic and electronic structures of the group-IV elements on Si(111)-(√3 ×√3) surface, J. Phys. Conf. Ser.100, 072025 (2008)
CrossRef ADS Google scholar
[270]
H. W. Yeom, K. Yoo, and D. H. Oh, Electronic structures of Ga-induced incommensurate and commensurate overlayers on the Si(111) surface, Surf. Sci.605(1-2), 146 (2011)
CrossRef ADS Google scholar
[271]
J. Čechal, M. Kolıbal, P. Kostelnık, and T. Šikola, Gallium structure on the Si(111)-(7× 7) surface: Influence of Ga coverage and temperature, J. Phys.: Condens. Matter19(1), 016011 (2007)
CrossRef ADS Google scholar
[272]
G. Meyer, M. Michailov, and M. Henzler, LEED studies of the epitaxy of Pb on Cu(111), Surf. Sci.202(1-2), 125 (1988)
CrossRef ADS Google scholar
[273]
C. Nagl, O. Haller, E. Platzgummer, M. Schmid, and P. Varga, Submonolayer growth of Pb on Cu(111): surface alloying and de-alloying, Surf. Sci.321(3), 237 (1994)
CrossRef ADS Google scholar
[274]
B. H. Müller, Th. Schmidt, and M. Henzler, Growth and melting of a Pb monolayer on Cu(111), Surf. Sci.376(1-3), 123 (1997)
CrossRef ADS Google scholar
[275]
Y. Tu and J. Tersoff, Origin of apparent critical thickness for island formation in heteroepitaxy, Phys. Rev. Lett.93(21), 216101 (2004)
CrossRef ADS Google scholar
[276]
T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs, Phys. Rev. Lett.86(11), 2381 (2001)
CrossRef ADS Google scholar
[277]
J. G. Belk, J. L. Sudijono, D. M. Holmes, C. F. McConville, T. S. Jones, and B. A. Joyce, Spatial distribution of In during the initial stages of growth of InAs on GaAs(001)-c(4 × 4), Surf. Sci.365(3), 735 (1996)
CrossRef ADS Google scholar
[278]
T. J. Krzyzewski, P. B. Joyce, G. R. Bell, and T. S. Jones, Surface morphology and reconstruction changes during heteroepitaxial growth of InAs on GaAs(001)- c(2× 4), Surf. Sci.482-485, 891 (2001)
CrossRef ADS Google scholar
[279]
J. Grabowski, C. Prohl, B. Höpfner, M. Dähne, and H. Eisele, Evolution of the InAs wetting layer on GaAs(001)-(4× 4) on the atomic scale, Appl. Phys. Lett.95(23), 233118 (2009)
CrossRef ADS Google scholar
[280]
C. Prohl, B. Höpfner, J. Grabowski, J. Grabowski, M. Dähne, and H. Eisele, Atomic structure and strain of the InAs wetting layer growing on GaAs(001)-c(4×4), J. Vac. Sci. Tech. B28, C5E13 (2009)
[281]
M. Sauvage-Simkin, Y. Garreau, R. Pinchaux, M. Véron, J. Landesman, and J. Nagle, Commensurate and incommensurate phases at reconstructed (In,Ga)As(001) surfaces: X-ray diffraction evidence for a composition lock-in, Phys. Rev. Lett.75(19), 3485 (1995)
CrossRef ADS Google scholar
[282]
C. Ratsch and A. Zangwill, Equilibrium theory of the Stranski–Krastanov epitaxial morphology, Surf. Sci.293(1-2), 123 (1993)
CrossRef ADS Google scholar
[283]
V. I. Tokar and H. Dreyssé, Lattice gas model of coherent strained epitaxy, Phys. Rev. B68(19), 195419 (2003)
CrossRef ADS Google scholar
[284]
V. I. Tokar and H. Dreysse, Size calibration of self-assembled nanoparticles in a model of strained epitaxy with passive substrate, Phys. Rev. B72(3), 035438 (2005)
CrossRef ADS Google scholar
[285]
W. D. Knight, K. Clemenger, W. A. de Heer, W. Saunders, M. Chou, and M. Cohen, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett.52(24), 2141 (1984)
CrossRef ADS Google scholar
[286]
T. P. Martin, Shell of atoms, Phys. Rep.273(4), 199 (1996)
CrossRef ADS Google scholar
[287]
S. Gwo, C. P. Chou, C. L. Wu, Y. J. Ye, S. J. Tsai, W. C. Lin, and M. T. Lin, Self-limiting size distribution of supported cobalt nanoclusters at room temperature, Phys. Rev. Lett.90(18), 185506 (2003)
CrossRef ADS Google scholar
[288]
M. Jałochowski, M. Hoffmann, and E. Bauer, Pb layer-bylayer growth at very low temperatures, Phys. Rev. B51(11), 7231 (1995)
CrossRef ADS Google scholar
[289]
Y. L. Wang and M. Y. Lai, Formation of surface magic clusters: A pathway to monodispersed nanostructures on surfaces, J. Phys.: Condens. Matter13(31), R589 (2001)
CrossRef ADS Google scholar
[290]
J. F. Jia, X. Liu, J. Z. Wang, J. L. Li, X. Wang, Q. K. Xue, Z. Q. Li, Z. Zhang, and S. Zhang, Fabrication and structural analysis of Al, Ga, and In nanocluster crystals, Phys. Rev. B66(16), 165412 (2002)
CrossRef ADS Google scholar
[291]
C. Priester and M. Lannoo, Origin of self-assembled quantum dots in highly mismatched heteroepitaxy, Phys. Rev. Lett.75(1), 93 (1995)
CrossRef ADS Google scholar
[292]
T. Kudo, T. Inoue, T. Kita, and O. Wada, Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image, J. Appl. Phys.104(7), 074305 (2008)
CrossRef ADS Google scholar
[293]
M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science281(5383), 1647 (1998)
CrossRef ADS Google scholar
[294]
C. Xu, X. Lai, G. W. Zajac, and D.W. Goodman, Scanning tunneling microscopy studies of the TiO2(110) surface: Structure and the nucleation growth of Pd, Phys. Rev. B56(11), 13464 (1997)
CrossRef ADS Google scholar
[295]
F. Liu, Self-assembly of three-dimensional metal islands: Nonstrained versus strained islands, Phys. Rev. Lett.89(24), 246105 (2002)
CrossRef ADS Google scholar
[296]
Z. Gai, B. Wu, J. P. Pierce, G. A. Farnan, D. Shu, M. Wang, Z. Zhang, and J. Shen, Self-assembly of nanometer-scale magnetic dots with narrow size distributions on an insulating substrate, Phys. Rev. Lett.89(23), 235502 (2002)
CrossRef ADS Google scholar
[297]
A. C. Levi and M. Kotrla, Theory and simulation of crystal growth, J. Phys.: Condens. Matter9(2), 299 (1997)
CrossRef ADS Google scholar
[298]
J. Cleick, Chaos, Viking Penguin Inc., 1987
[299]
J. Wu, P. Jin, Y. H. Jiao, X. J. Lv, and Z. G. Wang, Evolution of InAs/GaAs(001) islands during the two- to threedimensional growth mode transition in molecular-beam epitaxy, Nanotechnology18(16), 165301 (2007)
CrossRef ADS Google scholar
[300]
J. A. Floro, M. B. Sinclair, E. Chason, L. Freund, R. Twesten, R. Hwang, and G. Lucadamo, Novel SiGe island coarsening kinetics: Ostwald ripening and elastic interactions, Phys. Rev. Lett.84(4), 701 (2000)
CrossRef ADS Google scholar
[301]
M. Meixner, R. Kunert, and E. Scholl, Control of strainmediated growth kinetics of self-assembled semiconductor quantum dots, Phys. Rev. B67(19), 195301 (2003)
CrossRef ADS Google scholar
[302]
L. G. Wang, P. Kratzer, M. Scheffler, and N. Moll, Formation and Stability of Self-Assembled Coherent Islands in Highly Mismatched Heteroepitaxy, Phys. Rev. Lett.82(20), 4042 (1999)
CrossRef ADS Google scholar
[303]
L. G. Wang, P. Kratzer, N. Moll, and M. Scheffler, Size, shape, and stability of InAs quantum dots on the GaAs(001) substrate, Phys. Rev. B62(3), 1897 (2000)
CrossRef ADS Google scholar
[304]
A. Polimeni, A. Patane, M. Capizzi, F. Martelli, L. Nasi, and G. Salviati, Self-aggregation of quantum dots for very thin InAs layers grown on GaAs, Phys. Rev. B53(8), R4213 (1996)
CrossRef ADS Google scholar
[305]
V. G. Dubrovskii, M. A. Kazansky, M. V. Nazarenko, and L. T. Adzhemyan, Numerical analysis of Ostwald ripening in two-dimensional systems, J. Chem. Phys.134(9), 094507 (2011)
CrossRef ADS Google scholar
[306]
Y. S. Djikaev and E. Ruckenstein, Kinetic theory of nucleation based on a first passage time analysis: Improvement by the density-functional theory, J. Chem. Phys.123(21), 214503 (2005)
CrossRef ADS Google scholar
[307]
N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001), Appl. Phys. Lett.68(23), 3299 (1996)
CrossRef ADS Google scholar
[308]
D. S. Guimard, H. Lee, M. Nishioka, and Y. Arakawa, Growth of high-uniformity InAs/GaAs quantum dots with ultralow density below 107cm - 2 and emission above 1.3 µm, Appl. Phys. Lett.92(16), 163101 (2008)
CrossRef ADS Google scholar
[309]
A. Rosenauer, D. Gerthsen, D. Dyck, M. Arzberger, G. Böhm, and G. Abstreiter, Quantification of segregation and mass transport in InxGa1-xAs/GaAs Stranski-Krastanow layers, Phys. Rev. B64(24), 245334 (2001)
CrossRef ADS Google scholar
[310]
M. Gsell, P. Jakob, and D. Menzel, Effect of substrate strain on adsorption, Science280(5364), 717 (1998)
CrossRef ADS Google scholar
[311]
M. Mavrikakis, B. Hammer, and J. K. Nørskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett.81(13), 2819 (1998)
CrossRef ADS Google scholar
[312]
K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells, Appl. Phys. Lett.61(5), 557 (1992)
CrossRef ADS Google scholar
[313]
D. Litvinov, D. Gerthsen, A. Rosenauer, M. Schowalter, T. Passow, P. Feinäugle, and M. Hetterich, Transmission electron microscopy investigation of segregation and critical floating-layer content of indium for island formation in InxGa1-xAs, Phys. Rev. B74(16), 165306 (2006)
CrossRef ADS Google scholar
[314]
J. M. García, J. P. Silveira, and F. Briones, Strain relaxation and segregation effects during self-assembled InAs quantum dots formation on GaAs(001), Appl. Phys. Lett.77(3), 409 (2000)
CrossRef ADS Google scholar
[315]
A. G. Cullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, Stranski-Krastanow transition and epitaxial island growth, Phys. Rev. B66(8), 081305 (2002)
CrossRef ADS Google scholar
[316]
A. G. Cullis, D. J. Norris, M. A. Migliorato, and M. Hopkinson, Surface elemental segregation and the Stranski-Krastanow epitaxial islanding transition, Appl. Surf. Sci.244(1-4), 65 (2005)
CrossRef ADS Google scholar
[317]
T. Honma, S. Tsukamoto, and Y. Arakawa, In Situ scanning tunneling microscope observation of InAs wetting layer formation on GaAs(001) during molecular beam epitaxy growth at 500 °C, Jpn. J. Appl. Phys.45(30), L777 (2006)
CrossRef ADS Google scholar
[318]
F. Patella, S. Nufris, F. Arciprete, M. Fanfoni, E. Placidi, A. Sgarlata, and A. Balzarotti, Tracing the two- to threedimensional transition in the InAs/GaAs(001) heteroepitaxial growth, Phys. Rev. B67(20), 205308 (2003)
CrossRef ADS Google scholar
[319]
J. M. Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures, Phys. Rev. B40(9), 6149 (1989)
CrossRef ADS Google scholar
[320]
W. D. Xiao, Z. J. Yan, S. S. Kushvaha, M. J. Xu, and X. S. Wang, Different growth behavior of Ge, Al and Sb on graphite, Surf. Rev. Lett.13(2-3), 287 (2006)
CrossRef ADS Google scholar
[321]
S. S. Kushvaha, Z. Yan, W. Xiao, M. J. Xu, Q. K. Xue, and X. S. Wang, Self-assembled Ge, Sb and Al nanostructures on graphite: comparative STM studies, Nanotechnology18(14), 145501, (2007)
CrossRef ADS Google scholar
[322]
S. S. Kushvaha, H. Xu, W. Xiao, H. L. Zhang, A. T. S. Wee, and X. S. Wang, Scanning tunneling microscopy investigation of growth of self-assembled indium and aluminum nanostructures on inert substrates, Thin Solid Films517(16), 4540 (2009)
CrossRef ADS Google scholar
[323]
S. S. Kushvaha, H. L. Zhang, Z. Yan, A. T. S. Wee, and X. S. Wang, Growth of self-assembled Mn, Sb and MnSb nanostructures on highly oriented pyrolytic graphite, Thin Solid Films 520(23), 6909 (2012)
CrossRef ADS Google scholar
[324]
A. Ohtake, M. Ozeki, M. Terauchi, F. Sato, and M. Tanaka, Strain-induced surface segregation in In0.5Ga0.5 As/GaAs heteroepitaxy, Appl. Phys. Lett.80(21), 3931 (2002)
CrossRef ADS Google scholar
[325]
A. Ohtake and M. Ozeki, Growth mode of Inx Ga1-x As (0<∼ x<∼ 0.5) on GaAs(001) under As-deficient conditions, Phys. Rev. B65(15), 155318 (2002)
CrossRef ADS Google scholar
[326]
J. S. Kim and N. Koguchi, Near room temperature droplet epitaxy for fabrication of InAs quantum dots, Appl. Phys. Lett.85(24), 5893 (2004)
CrossRef ADS Google scholar
[327]
A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties, J. Appl. Phys.107(1), 014312 (2010)
CrossRef ADS Google scholar
[328]
K. Reyes, P. Smereka, D. Nothern, J. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, and C. Frigeri, Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory, Phys. Rev. B87(16), 165406 (2013)
CrossRef ADS Google scholar
[329]
F. Bastiman, A. G. Cullis, and M. Hopkinson, InAs/GaAs(001) wetting layer formation observed in situ by concurrent MBE and STM, Surf. Sci.603(24), 3439 (2009)
CrossRef ADS Google scholar
[330]
J. R. Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys.39(8), 4032 (1968)
CrossRef ADS Google scholar
[331]
J. R. Arthur, Surface stoichiometry and structure of GaAs, Surf. Sci.43(2), 449 (1974)
CrossRef ADS Google scholar
[332]
J. R. Arthur, Gallium arsenide surface structure and reaction kinetics: Field emission microscopy, J. Appl. Phys.37(8), 3057 (1966)
CrossRef ADS Google scholar
[333]
C. T. Foxon, M. R. Boudry, and B. A. Joyce, Evaluation of surface kinetic data by the transform analysis of modulated molecular beam measurements, Surf. Sci.44(1), 69 (1974)
CrossRef ADS Google scholar
[334]
C. T. Foxon and B. A. Joyce, Interaction kinetics of As2 and Ga on 100 GaAs surfaces, Surf. Sci.64(1), 293 (1977)
CrossRef ADS Google scholar
[335]
C. G. Morgan, P. Kratzer, and M. Scheffler, Arsenic dimer dynamics during MBE growth: Theoretical evidence for a novel chemisorption state of As2 molecules on GaAs surfaces, Phys. Rev. Lett.82(24), 4886 (1999)
CrossRef ADS Google scholar
[336]
M. Itoh, G. R. Bell, A. R. Avery, T. S. Jones, B. A. Joyce, and D. D. Vvedensky, Island nucleation and growth on reconstructed GaAs(001) surfaces, Phys. Rev. Lett.81, 633 (1998)
CrossRef ADS Google scholar
[337]
S. V. Ghaisas and A. Madhukar, Monte Carlo simulations of MBE growth of III–V semiconductors: The growth kinetics, mechanism, and consequences for the dynamics of RHEED intensity, J. Vac. Sci. Technol. B3(2), 540 (1985)
CrossRef ADS Google scholar
[338]
S. V. Ghaisas and A. Madhukar, Role of surface molecular reactions in influencing the growth mechanism and the nature of nonequilibrium surfaces: A Monte Carlo study of molecular-beam epitaxy, Phys. Rev. Lett.56(10), 1066 (1986)
CrossRef ADS Google scholar
[339]
S. V. Ghaisas and A. Madhukar, Surface kinetics and growth interruption in molecular-beam epitaxy of compound semiconductors: A computer simulation study, J. Appl. Phys.65(10), 3872 (1989)
CrossRef ADS Google scholar
[340]
T. Shitara, D. D. Vvedensky, M. R. Wilby, J. Zhang, J. Neave, and B. Joyce, Step-density variations and reflection high-energy electron-diffraction intensity oscillations during epitaxial growth on vicinal GaAs(001), Phys. Rev. B46(11), 6815 (1992)
CrossRef ADS Google scholar
[341]
P. Šmilauer and D. D. Vvedensky, Step-edge barriers on GaAs(001), Phys. Rev. B48(23), 17603 (1993)
CrossRef ADS Google scholar
[342]
K. Shiraishi and T. Ito, Theoretical investigation of adsorption behavior during molecular beam epitaxy growth of GaAs: ab initio based microscopic calculation, J. Cryst. Growth150, 158 (1995)
CrossRef ADS Google scholar
[343]
G. Colayni and R. Venkat, Growth dynamics of InGaAs by MBE: Process simulation and theoretical analysis, J. Cryst. Growth211(1-4), 21 (2000)
[344]
P. Kratzer, E. Penev, and M. Scheffler, Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations, Appl. Surf. Sci.216(1-4), 436 (2003)
CrossRef ADS Google scholar
[345]
J. Wu, Novel scenario for epitaxial growth process of quantum dots, Micronanoelectronic Technology49, 141 (2012)
[346]
J. Wu and P. Jin, Epitaxial Growth Process of Quantum Dots, in: Nanotechnology, edited by S. Sinha, N. K. Navani, and J. N. Govil, Studium Press LLC, Volume 3, 2013, pp 335-368
[347]
A. Mujica, A. Rubio, A. Muñoz, and R. Needs, Highpressure phases of group-IV, III–V, and II–VI compounds, Rev. Mod. Phys.75(3), 863 (2003)
CrossRef ADS Google scholar
[348]
N. E. Christensen, Calculated equation of state of InAs, Phys. Rev. B33(7), 5096 (1986)
CrossRef ADS Google scholar
[349]
N. E. Christensen, High Pressure in Semiconductor Physics (I), edited by T Suski and W Paul, New York: Academic, 1998
[350]
L. Pedesseau, J. Even, A. Bondi, W. Guo, S. Richard, H. Folliot, C. Labbe, C. Cornet, O. Dehaese, A. Le Corre, O. Durand, and S. Loualiche, Theoretical study of highly strained InAs material from first-principles modelling: Application to an ideal QD, J. Phys. D41(16), 165505 (2008)
CrossRef ADS Google scholar
[351]
Y. K. Vohra, S. T. Weir, and A. L. Ruoff, High-pressure phase transitions and equation of state of the III-V compound InAs up to 27 GPa, Phys. Rev. B31(11), 7344 (1985)
CrossRef ADS Google scholar
[352]
M. Durandurdu, Structural phase transition of germanium under uniaxial stress: An ab initio study, Phys. Rev. B71(5), 054112 (2005)
CrossRef ADS Google scholar
[353]
R. G. Hennig, A. Wadehra, K. P. Driver, W. D. Parker, C. J. Umrigar, and J. W. Wilkins, Phase transformation in Si from semiconducting diamond to metallic β-Sn phase in QMC and DFT under hydrostatic and anisotropic stress, Phys. Rev. B82(1), 014101 (2010)
CrossRef ADS Google scholar
[354]
J. C. Jamieson, Crystal structures at high pressures of metallic modifications of silicon and germanium, Science139(3556), 762 (1963)
CrossRef ADS Google scholar
[355]
K. Gáal-Nagy, A. Bauer, M. Schmitt, K. Karch, P. Pavone, and D. Strauch, Temperature and dynamical effects on the high-pressure cubic-diamond ↔ β-Tin phase transition in Si and Ge, Physica Status Solidi (b): Basic Res.211(1), 275 (1999)
[356]
C. Cheng, W. H. Huang, and H. J. Li, Thermodynamics of uniaxial phase transition: Ab initio study of the diamond-to-β-tin transition in Si and Ge, Phys. Rev. B63(15), 153202 (2001)
CrossRef ADS Google scholar
[357]
K. H. Hellwege, Physics of Group IV Elements and III-V Elements, Landolt–Börnstein, New Series, Group III, Vol. 17, Part a, Berlin: Springer, 1982
[358]
A. Jayaraman, W. Klement, and G. C. Kennedy, Melting and polymorphism at high pressures in some group IV elements and III-V compounds with the diamond/zincblende structure, Phys. Rev.130(2), 540 (1963)
CrossRef ADS Google scholar
[359]
F. P. Bundy, Phase diagrams of silicon and germanium to 200 kbar, 1000 °C, J. Chem. Phys.41(12), 3809 (1964)
[360]
D. J. Bottomley, The physical origin of InAs quantum dots on GaAs(001), Appl. Phys. Lett.72(7), 783 (1998)
CrossRef ADS Google scholar
[361]
D. J. Bottomley, The free energy of condensed matter under stress, Jpn. J. Appl. Phys.36(Part 2, No. 11A), L1464 (1997)
[362]
D. J. Bottomley, Formation and shape of InAs nanoparticles on GaAs surfaces, J. Vac. Sci. Technol. B17(2), 259 (1999)
CrossRef ADS Google scholar
[363]
F. Rosei and P. Raiteri, Stress induced surface melting during the growth of the Ge wetting layer on Si(001) and Si(111), Appl. Surf. Sci.195(1-4), 16 (2002)
[364]
D. K. Biegelsen, R. Bringans, J. Northrup, and L.E. Swartz, Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy, Phys. Rev. B41(9), 5701 (1990)
CrossRef ADS Google scholar
[365]
C. Ratsch, Strain induced change of surface reconstructions for InAs(001), Phys. Rev. B63, 161306(R) (2001)
[366]
A. Ohtake, P. Kocan, J. Nakamura, A. Natori, and N. Koguchi, Kinetics in surface reconstructions on GaAs(001), Phys. Rev. Lett.92(23), 236105 (2004)
CrossRef ADS Google scholar
[367]
M. Sauvage-Simkin, R. Pinchaux, J. Massies, P. Calverie, N. Jedrecy, J. Bonnet, and I. Robinson, Fractional stoichiometry of the GaAs(001)-c(4 × 4) surface: An in-situ X-ray scattering study, Phys. Rev. Lett.62(5), 563 (1989)
CrossRef ADS Google scholar
[368]
F. Liu, F. Wu, and M. G. Lagally, Effect of strain on structure and morphology of ultrathin Ge films on Si(001), Chem. Rev.97(4), 1045 (1997)
CrossRef ADS Google scholar
[369]
B. Voigtländer, Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth, Surf. Sci. Rep.43(5-8), 127 (2001)
[370]
J. Tersoff, Missing dimers and strain relief in Ge films on Si(100), Phys. Rev. B45(15), 8833 (1992)
CrossRef ADS Google scholar
[371]
F. Liu and M. G. Lagally, Interplay of stress, structure, and stoichiometry in Ge-covered Si(001), Phys. Rev. Lett.76(17), 3156 (1996)
CrossRef ADS Google scholar
[372]
T. Zhou, G. Renaud, C. Revenant, J. Issartel, T. U. Schülli, R. Felici, and A. Malachias, Atomic structure and composition of the 2 × N reconstruction of the Ge wetting layer on Si(001) investigated by surface X-ray diffraction, Phys. Rev. B83(19), 195426 (2011)
CrossRef ADS Google scholar
[373]
M. Tomitori, K. Watanabe, M. Kobayashi, and O. Nishikawa, STM study of the Ge growth mode on Si(001) substrates, Appl. Surf. Sci.76-77, 322 (1994)
CrossRef ADS Google scholar
[374]
I. Goldfarb, J. H. G. Owen, P. T. Hayden, D. R. Bowler, K. Miki, and G. A. D. Briggs, Gas-source growth of group IV semiconductors (III): Nucleation and growth of Ge/Si(001), Surf. Sci.394(1-3), 105 (1997)
CrossRef ADS Google scholar
[375]
P. W. Sutter, J. I. Flege, and E. I. Sutter, Epitaxial graphene on ruthenium, Nature7(5), 406 (2008)
CrossRef ADS Google scholar
[376]
M. Henzler, Growth of epitaxial monolayers, Surf. Sci.357-358, 809 (1996)
CrossRef ADS Google scholar
[377]
B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett.97(22), 223109 (2010)
CrossRef ADS Google scholar
[378]
A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voon, S. Vizzini, B. Aufray, and H. Oughaddou, A review on silicene — New candidate for electronics, Surf. Sci. Rep.67(1), 1 (2012)
CrossRef ADS Google scholar
[379]
H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J. Y. Hoarau, B. Aufray, and J. P. Bibérian, Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature, J. Phys.: Condens. Matter24(17), 172001 (2012)
CrossRef ADS Google scholar
[380]
B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett.12(7), 3507 (2012)
CrossRef ADS Google scholar
[381]
H.Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Phys. Rev. B80(15), 155453 (2009)
CrossRef ADS Google scholar
[382]
S. Scandolo, M. Bernasconi, G. L. Chiarotti, P. Focher, and E. Tosatti, Pressure-induced transformation path of graphite to diamond, Phys. Rev. Lett.74(20), 4015 (1995)
CrossRef ADS Google scholar
[383]
D. T. Wang, N. Esser, M. Cardona, and J. Zegenhagen, Epitaxy of Sn on Si(111), Surf. Sci.343(1-2), 31 (1995)
CrossRef ADS Google scholar
[384]
L. L. Wang, X. C. Ma, S. H. Ji, Y. Fu, Q. Shen, J. Jia, K. Kelly, and Q. Xue, Epitaxial growth and quantum well states study of Sn thin films on Sn induced Si(111)-(23 × 23) R30° surface, Phys. Rev. B77(20), 205410 (2008)
CrossRef ADS Google scholar
[385]
Q. Shen, W. Li, G. Dong, G. F. Sun, Y. Sun, X. Ma, J. Jia, and Q. Xue, Self-assembled Sn nanoplatelets on Si(1 1 1)-2 √3 × 2 √3-Sn surfaces, J. Phys. D42(1), 015305 (2009)
CrossRef ADS Google scholar
[386]
L. L. Wang, X. C. Ma, Y. X. Ning, S. H. Ji, Y. S. Fu, J. F. Jia, K. F. Kelly and Q. K. Xue, Atomic scale study of strain relaxation in Sn islands on Sn-induced Si(111)-(2 √3 × 2 √3) surface, Appl. Phys. Lett.94(15), 153111 (2009)
CrossRef ADS Google scholar
[387]
A. N’Diaye, S. Bleikamp, P. Feibelman, and T. Michely, Two-dimensional Ir cluster lattice on a graphene Moiŕe on Ir(111), Phys. Rev. Lett.97(21), 215501 (2006)
CrossRef ADS Google scholar
[388]
J. P. Feibelman, Pinning of graphene to Ir(111) by flat Ir dots, Phys. Rev. B77(16), 165419 (2008)
CrossRef ADS Google scholar
[389]
C. Busse, P. Lazic, R. Djemour, J. Coraux, T. Gerber, N. Atodiresei, V. Caciuc, R. Brako, A. T. N’Diaye, S. Blügel, J. Zegenhagen, and T. Michely, Graphene on Ir(111): Physisorption with chemical modulation, Phys. Rev. Lett.107(3), 036101 (2011)
CrossRef ADS Google scholar
[390]
E. Loginova, S. Nie, K. Thurmer, N. C. Bartelt, and K. F. McCarty, Defects of graphene on Ir(111): Rotational domains and ridges, Phys. Rev. B80(8), 085430 (2009)
CrossRef ADS Google scholar
[391]
D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Control of graphene’s properties by reversible hydrogenation: Evidence for graphane, Science323(5914), 610 (2009)
CrossRef ADS Google scholar
[392]
C. Freeman, F. Claeyssens, N. Allan, and J. Harding, Graphitic nanofilms as precursors to Wurtzite films: Theory, Phys. Rev. Lett.96(6), 066102 (2006)
CrossRef ADS Google scholar
[393]
C. Tusche, H. L. Meyerheim, and J. Kirschner, Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets, Phys. Rev. Lett.99(2), 026102 (2007)
CrossRef ADS Google scholar
[394]
G. Weirum, G. Barcaro, A. Fortunelli, F. Weber, R. Schennach, S. Surnev, and F. P. Netzer, Growth and surface structure of zinc oxide layers on a Pd(111) surface, J. Phys. Chem. C114(36), 15432 (2010)
CrossRef ADS Google scholar
[395]
M. F. Jarrold and V. A. Constant, Silicon cluster ions: Evidence for a structural transition, Phys. Rev. Lett.67(21), 2994 (1991)
CrossRef ADS Google scholar
[396]
M. F. Jarrold, Nanosurface chemistry on size-selected silicon clusters, Science252(5009), 1085 (1991)
CrossRef ADS Google scholar
[397]
M. F. Jarrold and J. E. Bower, Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres, J. Chem. Phys.96(12), 9180 (1992)
CrossRef ADS Google scholar
[398]
R. R. Hudgins, M. Imai, M. F. Jarrold, and P. Dugourd, High-resolution ion mobility measurements for silicon cluster anions and cations, J. Chem. Phys.111(17), 7865 (1999)
CrossRef ADS Google scholar
[399]
A. A. Shvartsburg, R. R. Hudgins, P. Dugourd, and M. F. Jarrold, Structural information from ion mobility measurements: Applications to semiconductor clusters, Chem. Soc. Rev.30(1), 26 (2001)
CrossRef ADS Google scholar
[400]
D. F. Hagen, Characterization of isomeric compounds by gas and plasma chromatography, Anal. Chem.51(7), 870 (1979)
CrossRef ADS Google scholar
[401]
G. von Helden, M. T. Hsu, P. R. Kemper, and M. T. Bowers, Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes, J. Chem. Phys.95(5), 3835 (1991)
CrossRef ADS Google scholar
[402]
S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng, Endohedral Silicon Fullerenes SiN(27 N 39), J. Am. Chem. Soc.126(42), 13845 (2004)
CrossRef ADS Google scholar
[403]
J. Zhao, J. Wang, J. Jellinek, S. Yoo, and X. C. Zeng, Stuffed fullerene structures for medium-sized silicon clusters, Eur. Phys. J. D34(1-3), 35 (2005)
CrossRef ADS Google scholar
[404]
O. Oña, V. E. Bazterra, M. C. Caputo, J. Facelli, P. Fuentealba, and M. Ferraro, Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18-Si60, Phys. Rev. A73(5), 053203 (2006)
CrossRef ADS Google scholar
[405]
J. Zhao, L. Ma, and B. Wen, Lowest-energy endohedral fullerene structure of Si60 from a genetic algorithm and density-functional theory, J. Phys.: Condens. Matter19(22), 226208 (2007)
CrossRef ADS Google scholar
[406]
R. L. Zhou and B. C. Pan, Structural features of silicon clusters Sin(n = 40-57, 60), Phys. Lett. A368(5), 396 (2007)
CrossRef ADS Google scholar
[407]
M. Ehbrecht and F. Huisken, Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane, Phys. Rev. B59(4), 2975 (1999)
CrossRef ADS Google scholar
[408]
D. K. Yu, R. Q. Zhang, and S. T. Lee, Structural transition in nanosized silicon clusters, Phys. Rev. B65(24), 245417 (2002)
CrossRef ADS Google scholar
[409]
G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Photoluminescence properties of silicon nanocrystals as a function of their size, Phys. Rev. B62(23), 15942 (2000)
CrossRef ADS Google scholar
[410]
P. Mélinon, P. Kéghélian, B. Prével, A. Perez, G. Guiraud, J. LeBrusq, J. Lermé, M. Pellarin, M. Broyer, Nanostructured silicon films obtained by neutral cluster depositions, J. Chem. Phys.107(23), 10278 (1997)
CrossRef ADS Google scholar
[411]
P. Mélinon, P. Kéghélian, B. Prével, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pellarin, J. Lermé, M. Broyer, J. L. Rousset, and P. Delichére, Structural, vibrational, and optical properties of silicon cluster assembled films, J. Chem. Phys.108(11), 4607 (1998)
[412]
A. N. Goldstein, The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors, Appl. Phys. A62(1), 33 (1996)
CrossRef ADS Google scholar
[413]
U. Röthlisberger, W. Andreoni, and M. Parrinello, Structure of nanoscale silicon clusters, Phys. Rev. Lett.72(5), 665 (1994)
CrossRef ADS Google scholar
[414]
D. Tománek and M. A. Schluter, Growth regimes of carbon clusters, Phys. Rev. Lett.67(17), 2331 (1991)
CrossRef ADS Google scholar
[415]
P. R. C. Kent, M. D. Towler, R. J. Needs, and G. Rajagopal, Carbon clusters near the crossover to fullerene stability, Phys. Rev. B62(23), 15394 (2000)
CrossRef ADS Google scholar
[416]
P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford: Clarendon Press, 1995
[417]
E. Hernández, P. Ordejón, and H. Terrones, Fullerene growth and the role of nonclassical isomers, Phys. Rev. B63(19), 193403 (2001)
CrossRef ADS Google scholar
[418]
J. R. Heath, in: Fullerenes: Synthesis, Properties and Chemistry of Large Carbon Clusters, edited by G. S. Hammond and V. J. Kuck, ACS Symposium Series No. 481, Washington: American Chemical Society, 1991, page 1
[419]
A. A. Shvartsburg, R. R. Hudgins, P. Dugourd, R. Gutierrez, T. Frauenheim, and M. Jarrold, Observation of “stick” and “handle” intermediates along the fullerene road, Phys. Rev. Lett.84(11), 2421 (2000)
CrossRef ADS Google scholar
[420]
A. S. Barnard, Theory and modeling of nanocarbon phase stability, Diamond Related Materials15(2-3), 285 (2006)
[421]
S. J. Kwon and J.G. Park, Theoretical analysis of the graphitization of a nanodiamond, J. Phys.: Condens. Matter19(38), 386215 (2007)
CrossRef ADS Google scholar
[422]
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature318(6042), 162 (1985)
CrossRef ADS Google scholar
[423]
A. S. Barnard, Modelling of nanoparticles: Approaches to morphology and evolution, Rep. Prog. Phys.73, 086502 (2010)
CrossRef ADS Google scholar
[424]
R. N. Kostoff, J. S. Murday, C. G. Y. Lau, and W. M. Tolles, The seminal literature of nanotechnology research, J. Nanopart. Res.8, 193 (2006)
CrossRef ADS Google scholar
[425]
S. H. Tolbert and A. P. Alivisatos, The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure, J. Chem. Phys.102(11), 4642 (1995)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(974 KB)

Accesses

Citations

Detail

Sections
Recommended

/