Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

Lin-Mei Liang(梁林海), Shi-Hai Sun(孙仕海), Mu-Sheng Jiang(江木生), Chun-Yan Li(李春燕)

PDF(828 KB)
PDF(828 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 613-628. DOI: 10.1007/s11467-014-0420-6
REVIEW ARTICLE
REVIEW ARTICLE

Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

Author information +
History +

Abstract

In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

Graphical abstract

Keywords

quantum key distribution / quantum cryptography / quantum hacking

Cite this article

Download citation ▾
Lin-Mei Liang(梁林海), Shi-Hai Sun(孙仕海), Mu-Sheng Jiang(江木生), Chun-Yan Li(李春燕). Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices. Front. Phys., 2014, 9(5): 613‒628 https://doi.org/10.1007/s11467-014-0420-6

References

[1]
C. H. Bennett and G. Brassard, Quantum Cryptography: Public key distribution and coin tossing, in: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing , Bangalore, India (IEEE, New York), 1984, pp 175−179
[2]
H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science, 1999, 283(5410): 2050
CrossRef ADS Google scholar
[3]
P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett., 2000, 85(2): 441
CrossRef ADS Google scholar
[4]
D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, Security of quantum key distribution with imperfect devices, Quant. Inf. Comput., 2004, 4(5): 325
[5]
H. Inamori, N. Lütkenhaus, and D. Mayers, Unconditional security of practical quantum key distribution, Eur. Phys. J. D, 2007, 41(3): 599
CrossRef ADS Google scholar
[6]
M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, Telecommunications-band heralded single photons from a silicon nanophotonic chip, Appl. Phys. Lett., 2012, 100(26): 261104
CrossRef ADS Google scholar
[7]
J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, High purity bright single photon source, Opt. Express, 2007, 15(13): 7940
CrossRef ADS Google scholar
[8]
F. Hargart, C. A. Kessler, T. Schwarzbäck, E. Koroknay, S. Weidenfeld, M. Jetter, and P. Michler, Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter, Appl. Phys. Lett., 2013, 102(1): 011126
CrossRef ADS Google scholar
[9]
M. M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, and S. Montangero, Room-temperature Rydberg single-photon source, Phys. Rev. A, 2013, 87(5): 053412
CrossRef ADS Google scholar
[10]
S. Deshpande and P. Bhattacharya, An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K, Appl. Phys. Lett., 2013, 103(24): 241117
CrossRef ADS Google scholar
[11]
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 1991, 67(6): 661
CrossRef ADS Google scholar
[12]
F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A, 2004, 69(5): 052319
CrossRef ADS Google scholar
[13]
G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China, 2007, 2(3): 251
CrossRef ADS Google scholar
[14]
F. G. Deng and G. L. Long, Controlled order rearrangement encryption for quantum key distribution, Phys. Rev. A, 2003, 68(4): 042315
CrossRef ADS Google scholar
[15]
B. Huttner, N. Imoto, N. Gisin, and T. Mor, Quantum cryptography with coherent states, Phys. Rev. A, 1995, 51(3): 1863
CrossRef ADS Google scholar
[16]
G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett., 2000, 85(6): 1330
CrossRef ADS Google scholar
[17]
N. Lütkenhaus and M. Jahma, Quantum key distribution with realistic states: photon-number statistics in the photonnumber splitting attack, New J. Phys., 2002, 4: 44
CrossRef ADS Google scholar
[18]
W. T. Liu, S. H. Sun, L. M. Liang, and J. M. Yuan, Proof-ofprinciple experiment of a modified photon-number-splitting attack against quantum key distribution, Phys. Rev. A, 2011, 83(4): 042326
CrossRef ADS Google scholar
[19]
W. Y. Hwang, Quantum key distribution with high loss: Toward global secure communication, Phys. Rev. Lett., 2003, 91(5): 057901
CrossRef ADS Google scholar
[20]
H. K. Lo, X. F. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett., 2005, 94(23): 230504
CrossRef ADS Google scholar
[21]
X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A, 2005, 72(1): 012326
CrossRef ADS Google scholar
[22]
X. B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett., 2005, 94(23): 230503
CrossRef ADS Google scholar
[23]
C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, Experimental long-distance decoy-state quantum key distribution based on polarization encoding, Phys. Rev. Lett., 2007, 98(1): 010505
CrossRef ADS Google scholar
[24]
T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. Rarity, A. Zeilinger, and H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett., 2007, 98(1): 010504
CrossRef ADS Google scholar
[25]
D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. Lita, S. Nam, and J. Nordholt, Long-distance decoy-state quantum key distribution in optical fiber, Phys. Rev. Lett., 2007, 98(1): 010503
CrossRef ADS Google scholar
[26]
Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, Experimental quantum key distribution with decoy states, Phys. Rev. Lett., 2006, 96(7): 070502
CrossRef ADS Google scholar
[27]
Y. Liu, T. Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, C. Z. Peng, K. Chen, Z. B. Chen, and J. W. Pan, Decoy-state quantum key distribution with polarized photons over 200 km, Opt. Express, 2010, 18(8): 8587
CrossRef ADS Google scholar
[28]
Y. Zhao, B. Qi, and H. K. Lo, Quantum key distribution with an unknown and untrusted source, Phys. Rev. A, 2008, 77(5): 052327
CrossRef ADS Google scholar
[29]
X. Peng, H. Jiang, B. J. Xu, X. F. Ma, and H. Guo, Experimental quantum-key distribution with an untrusted source, Opt. Lett., 2008, 33(18): 2077
CrossRef ADS Google scholar
[30]
B. J. Xu, X. Peng, and H. Guo, Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system, Phys. Rev. A, 2010, 82(4): 042301
CrossRef ADS Google scholar
[31]
X. B. Wang, Decoy-state quantum key distribution with large random errors of light intensity, Phys. Rev. A, 2007, 75(5): 052301
CrossRef ADS Google scholar
[32]
X. B. Wang, C. Z. Peng, and J. W. Pan, Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source, Appl. Phys. Lett., 2007, 90(3): 031110
CrossRef ADS Google scholar
[33]
X. B. Wang, L. Yang, C. Z. Peng, and J. W. Pan, Decoystate quantum key distribution with both source errors and statistical fluctuations, New J. Phys., 2009, 11(7): 075006
CrossRef ADS Google scholar
[34]
X. B. Wang, C. Z. Peng, J. Zhang, L. Yang, and J. W. Pen, General theory of decoy-state quantum cryptography with source errors, Phys. Rev. A, 2008, 77(4): 042311
CrossRef ADS Google scholar
[35]
S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, Information leakage via side channels in freespace BB84 quantum cryptography, New J. Phys., 2009, 11(6): 065001
CrossRef ADS Google scholar
[36]
C. H. F. Fung, B. Qi, K. Tamaki, and H. K. Lo, Phaseremapping attack in practical quantum-key-distribution systems, Phys. Rev. A, 2007, 75(3): 032314
CrossRef ADS Google scholar
[37]
F. H. Xu, B. Qi, and H. K. Lo, Experimental demonstration of phase-remapping attack in a practical quantum key distribution system, New J. Phys., 2010, 12(11): 113026
CrossRef ADS Google scholar
[38]
H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources, Phys. Rev. A, 2011, 84(6): 062308
CrossRef ADS Google scholar
[39]
Y. Zhao, C. H. Fung, B. Qi, C. Chen, and H. K. Lo, Quantum hacking: Experimental demonstration of timeshift attack against practical quantum-key-distribution systems, Phys. Rev. A, 2008, 78(4): 042333
CrossRef ADS Google scholar
[40]
V. Makarov, A. Anisimov, and J. Skaar, Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A, 2006, 74(2): 022313
CrossRef ADS Google scholar
[41]
V. Makarov and J. Skaar, Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols, Quant. Inf. Comput., 2008, 8(6−7): 0622
[42]
L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics, 2010, 4(10): 686
CrossRef ADS Google scholar
[43]
V. Makarov, Controlling passively quenched single photon detectors by bright light, New J. Phys., 2009, 11(6): 065003
CrossRef ADS Google scholar
[44]
N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Device calibration impacts security of quantum key distribution, Phys. Rev. Lett., 2011, 107(11): 110501
CrossRef ADS Google scholar
[45]
I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography system, Nat. Commun., 2011, 2: 349
CrossRef ADS Google scholar
[46]
C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys., 2012, 84(2): 621
CrossRef ADS Google scholar
[47]
B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A, 2007, 76(5): 052323
CrossRef ADS Google scholar
[48]
Z. Zhang and P. L. Voss, Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems, Opt. Express, 2009, 17(14): 12090
CrossRef ADS Google scholar
[49]
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantum-keydistribution system with a heterodyne protocol, Phys. Rev. A, 2013, 87(5): 052309
CrossRef ADS Google scholar
[50]
J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A, 2013, 87(6): 062329
CrossRef ADS Google scholar
[51]
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A, 2013, 88(2): 022339
CrossRef ADS Google scholar
[52]
A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett., 2007, 98(23): 230501
CrossRef ADS Google scholar
[53]
S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-independent quantum key distribution secure against collective attacks, New J. Phys., 2009, 11(4): 045021
CrossRef ADS Google scholar
[54]
H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett., 2012, 108(13): 130503
CrossRef ADS Google scholar
[55]
K. Tamaki, H. K. Lo, C. H. F. Fung, and B. Qi, Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw, Phys. Rev. A, 2012, 85(4): 042307
CrossRef ADS Google scholar
[56]
X. F. Ma and M. Razavi, Alternative schemes for measurement-device-independent quantum key distribution, Phys. Rev. A, 2012, 86(6): 062319
CrossRef ADS Google scholar
[57]
S. H. Sun, M. Gao, C. Y. Li, and L. M. Liang, Practical decoy-state measurement-device-independent quantum key distribution, Phys. Rev. A, 2013, 87(5): 052329
CrossRef ADS Google scholar
[58]
Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett., 2013, 111(13): 130502
CrossRef ADS Google scholar
[59]
A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, Real-world two-photon interference and proofof-principle quantum key distribution immune to detector attacks, Phys. Rev. Lett., 2013, 111(13): 130501
CrossRef ADS Google scholar
[60]
Z. Y. Tang, Z. F. Liao, F. H. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, arXiv: 1306.6134, 2013
[61]
S. H. Sun, M. S. Jiang, and L. M. Liang, Passive Faraday-mirror attack in a practical two-way quantum-keydistribution system, Phys. Rev. A, 2011, 83(6): 062331
CrossRef ADS Google scholar
[62]
S. H. Sun, M. Gao, M. S. Jiang, C. Y. Li, and L. M. Liang, Partially random phase attack to the practical twoway quantum-key-distribution system, Phys. Rev. A, 2012, 85(3): 032304
CrossRef ADS Google scholar
[63]
M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states, Phys. Rev. A, 2012, 86(3): 032310
CrossRef ADS Google scholar
[64]
M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Frequency shift attack on “plug-and-play” quantum key distribution systems, J. Mod. Opt., 2014, 61(2): 147
CrossRef ADS Google scholar
[65]
S. H. Sun, M. S. Jiang, and L. M. Liang, Single-photondetection attack on the phase-coding continuous-variable quantum cryptography, Phys. Rev. A, 2012, 86(1): 012305
CrossRef ADS Google scholar
[66]
A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryptography, Appl. Phys. Lett., 1997, 70(7): 793
CrossRef ADS Google scholar
[67]
https://www.newport.com.cn/f/fiber-optic-faraday-rotator-mirrors
[68]
https://lunainc.com/general-photonics-now-luna-innovations
[69]
H. F. Chau, Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate, Phys. Rev. A, 2002, 66(6): 060302 (R)
CrossRef ADS Google scholar
[70]
K. S. Ranade and G. Alber, Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable biterror rates, J. Phys. A, 2006, 39(7): 1701
CrossRef ADS Google scholar
[71]
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys., 2009, 81(3): 1301
CrossRef ADS Google scholar
[72]
H. K. Lo and J. Preskill, Security of quantum key distribution using weak coherent states with Nonrandom phases, Quant. Inf. Comput., 2007, 5(6): 431
[73]
Y. Zhao, B. Qi, and H. K. Lo, Experimental quantum key distribution with active phase randomization, Appl. Phys. Lett., 2007, 90(4): 044106
CrossRef ADS Google scholar
[74]
S. H. Sun and L. M. Liang, Experimental demonstration of an active phase randomization and monitor module for quantum key distribution, Appl. Phys. Lett., 2012, 101(7): 071107
CrossRef ADS Google scholar
[75]
https://www.idquantique.com/
[76]
M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, , Field test of quantum key distribution in the Tokyo QKD Network, Opt. Express, 2011, 19(11): 10387
CrossRef ADS Google scholar
[77]
P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller, and J. E. Nordholt, Longdistance quantum key distribution in optical fibre, New J. Phys., 2006, 8(9): 193
CrossRef ADS Google scholar
[78]
C. Gobby, Z. L. Yuan, and A. J. Shields, Quantum key distribution over 122 km of standard telecom fiber, Appl. Phys. Lett., 2004, 84(19): 3762
CrossRef ADS Google scholar
[79]
T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, and R. Namiki, Quantum cryptography using pulsed homodyne detection, Phys. Rev. A, 2003, 68(4): 042331
CrossRef ADS Google scholar
[80]
S. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys., 2005, 77(2): 513
CrossRef ADS Google scholar
[81]
https://www.magiqtech.com/
[82]
D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, High rate, longdistance quantum key distribution over 250 km of ultralow loss fibres, New J. Phys., 2009, 11(7): 075003
CrossRef ADS Google scholar
[83]
P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, Quantum key distribution and 1 Gbps data encryption over a single fibre, New J. Phys., 2010, 12(6): 063027
CrossRef ADS Google scholar
[84]
R. Namiki and T. Hirano, Security of quantum cryptography using balanced homodyne detection, Phys. Rev. A, 2003, 67(2): 022308
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(828 KB)

Accesses

Citations

Detail

Sections
Recommended

/