Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

Lin-Mei Liang(梁林海) , Shi-Hai Sun(孙仕海) , Mu-Sheng Jiang(江木生) , Chun-Yan Li(李春燕)

Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 613 -628.

PDF (828KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 613 -628. DOI: 10.1007/s11467-014-0420-6
REVIEW ARTICLE

Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

Author information +
History +
PDF (828KB)

Abstract

In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

Graphical abstract

Keywords

quantum key distribution / quantum cryptography / quantum hacking

Cite this article

Download citation ▾
Lin-Mei Liang(梁林海), Shi-Hai Sun(孙仕海), Mu-Sheng Jiang(江木生), Chun-Yan Li(李春燕). Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices. Front. Phys., 2014, 9(5): 613-628 DOI:10.1007/s11467-014-0420-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. H. Bennett and G. Brassard, Quantum Cryptography: Public key distribution and coin tossing, in: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing , Bangalore, India (IEEE, New York), 1984, pp 175−179

[2]

H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science, 1999, 283(5410): 2050

[3]

P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett., 2000, 85(2): 441

[4]

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, Security of quantum key distribution with imperfect devices, Quant. Inf. Comput., 2004, 4(5): 325

[5]

H. Inamori, N. Lütkenhaus, and D. Mayers, Unconditional security of practical quantum key distribution, Eur. Phys. J. D, 2007, 41(3): 599

[6]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, Telecommunications-band heralded single photons from a silicon nanophotonic chip, Appl. Phys. Lett., 2012, 100(26): 261104

[7]

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, High purity bright single photon source, Opt. Express, 2007, 15(13): 7940

[8]

F. Hargart, C. A. Kessler, T. Schwarzbäck, E. Koroknay, S. Weidenfeld, M. Jetter, and P. Michler, Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter, Appl. Phys. Lett., 2013, 102(1): 011126

[9]

M. M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, and S. Montangero, Room-temperature Rydberg single-photon source, Phys. Rev. A, 2013, 87(5): 053412

[10]

S. Deshpande and P. Bhattacharya, An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K, Appl. Phys. Lett., 2013, 103(24): 241117

[11]

A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 1991, 67(6): 661

[12]

F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A, 2004, 69(5): 052319

[13]

G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China, 2007, 2(3): 251

[14]

F. G. Deng and G. L. Long, Controlled order rearrangement encryption for quantum key distribution, Phys. Rev. A, 2003, 68(4): 042315

[15]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, Quantum cryptography with coherent states, Phys. Rev. A, 1995, 51(3): 1863

[16]

G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett., 2000, 85(6): 1330

[17]

N. Lütkenhaus and M. Jahma, Quantum key distribution with realistic states: photon-number statistics in the photonnumber splitting attack, New J. Phys., 2002, 4: 44

[18]

W. T. Liu, S. H. Sun, L. M. Liang, and J. M. Yuan, Proof-ofprinciple experiment of a modified photon-number-splitting attack against quantum key distribution, Phys. Rev. A, 2011, 83(4): 042326

[19]

W. Y. Hwang, Quantum key distribution with high loss: Toward global secure communication, Phys. Rev. Lett., 2003, 91(5): 057901

[20]

H. K. Lo, X. F. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett., 2005, 94(23): 230504

[21]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A, 2005, 72(1): 012326

[22]

X. B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett., 2005, 94(23): 230503

[23]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, Experimental long-distance decoy-state quantum key distribution based on polarization encoding, Phys. Rev. Lett., 2007, 98(1): 010505

[24]

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. Rarity, A. Zeilinger, and H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett., 2007, 98(1): 010504

[25]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. Lita, S. Nam, and J. Nordholt, Long-distance decoy-state quantum key distribution in optical fiber, Phys. Rev. Lett., 2007, 98(1): 010503

[26]

Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, Experimental quantum key distribution with decoy states, Phys. Rev. Lett., 2006, 96(7): 070502

[27]

Y. Liu, T. Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, C. Z. Peng, K. Chen, Z. B. Chen, and J. W. Pan, Decoy-state quantum key distribution with polarized photons over 200 km, Opt. Express, 2010, 18(8): 8587

[28]

Y. Zhao, B. Qi, and H. K. Lo, Quantum key distribution with an unknown and untrusted source, Phys. Rev. A, 2008, 77(5): 052327

[29]

X. Peng, H. Jiang, B. J. Xu, X. F. Ma, and H. Guo, Experimental quantum-key distribution with an untrusted source, Opt. Lett., 2008, 33(18): 2077

[30]

B. J. Xu, X. Peng, and H. Guo, Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system, Phys. Rev. A, 2010, 82(4): 042301

[31]

X. B. Wang, Decoy-state quantum key distribution with large random errors of light intensity, Phys. Rev. A, 2007, 75(5): 052301

[32]

X. B. Wang, C. Z. Peng, and J. W. Pan, Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source, Appl. Phys. Lett., 2007, 90(3): 031110

[33]

X. B. Wang, L. Yang, C. Z. Peng, and J. W. Pan, Decoystate quantum key distribution with both source errors and statistical fluctuations, New J. Phys., 2009, 11(7): 075006

[34]

X. B. Wang, C. Z. Peng, J. Zhang, L. Yang, and J. W. Pen, General theory of decoy-state quantum cryptography with source errors, Phys. Rev. A, 2008, 77(4): 042311

[35]

S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, Information leakage via side channels in freespace BB84 quantum cryptography, New J. Phys., 2009, 11(6): 065001

[36]

C. H. F. Fung, B. Qi, K. Tamaki, and H. K. Lo, Phaseremapping attack in practical quantum-key-distribution systems, Phys. Rev. A, 2007, 75(3): 032314

[37]

F. H. Xu, B. Qi, and H. K. Lo, Experimental demonstration of phase-remapping attack in a practical quantum key distribution system, New J. Phys., 2010, 12(11): 113026

[38]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources, Phys. Rev. A, 2011, 84(6): 062308

[39]

Y. Zhao, C. H. Fung, B. Qi, C. Chen, and H. K. Lo, Quantum hacking: Experimental demonstration of timeshift attack against practical quantum-key-distribution systems, Phys. Rev. A, 2008, 78(4): 042333

[40]

V. Makarov, A. Anisimov, and J. Skaar, Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A, 2006, 74(2): 022313

[41]

V. Makarov and J. Skaar, Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols, Quant. Inf. Comput., 2008, 8(6−7): 0622

[42]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics, 2010, 4(10): 686

[43]

V. Makarov, Controlling passively quenched single photon detectors by bright light, New J. Phys., 2009, 11(6): 065003

[44]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Device calibration impacts security of quantum key distribution, Phys. Rev. Lett., 2011, 107(11): 110501

[45]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography system, Nat. Commun., 2011, 2: 349

[46]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys., 2012, 84(2): 621

[47]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A, 2007, 76(5): 052323

[48]

Z. Zhang and P. L. Voss, Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems, Opt. Express, 2009, 17(14): 12090

[49]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantum-keydistribution system with a heterodyne protocol, Phys. Rev. A, 2013, 87(5): 052309

[50]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A, 2013, 87(6): 062329

[51]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A, 2013, 88(2): 022339

[52]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett., 2007, 98(23): 230501

[53]

S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-independent quantum key distribution secure against collective attacks, New J. Phys., 2009, 11(4): 045021

[54]

H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett., 2012, 108(13): 130503

[55]

K. Tamaki, H. K. Lo, C. H. F. Fung, and B. Qi, Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw, Phys. Rev. A, 2012, 85(4): 042307

[56]

X. F. Ma and M. Razavi, Alternative schemes for measurement-device-independent quantum key distribution, Phys. Rev. A, 2012, 86(6): 062319

[57]

S. H. Sun, M. Gao, C. Y. Li, and L. M. Liang, Practical decoy-state measurement-device-independent quantum key distribution, Phys. Rev. A, 2013, 87(5): 052329

[58]

Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett., 2013, 111(13): 130502

[59]

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, Real-world two-photon interference and proofof-principle quantum key distribution immune to detector attacks, Phys. Rev. Lett., 2013, 111(13): 130501

[60]

Z. Y. Tang, Z. F. Liao, F. H. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, arXiv: 1306.6134, 2013

[61]

S. H. Sun, M. S. Jiang, and L. M. Liang, Passive Faraday-mirror attack in a practical two-way quantum-keydistribution system, Phys. Rev. A, 2011, 83(6): 062331

[62]

S. H. Sun, M. Gao, M. S. Jiang, C. Y. Li, and L. M. Liang, Partially random phase attack to the practical twoway quantum-key-distribution system, Phys. Rev. A, 2012, 85(3): 032304

[63]

M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states, Phys. Rev. A, 2012, 86(3): 032310

[64]

M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Frequency shift attack on “plug-and-play” quantum key distribution systems, J. Mod. Opt., 2014, 61(2): 147

[65]

S. H. Sun, M. S. Jiang, and L. M. Liang, Single-photondetection attack on the phase-coding continuous-variable quantum cryptography, Phys. Rev. A, 2012, 86(1): 012305

[66]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryptography, Appl. Phys. Lett., 1997, 70(7): 793

[67]

https://www.newport.com.cn/f/fiber-optic-faraday-rotator-mirrors

[68]

https://lunainc.com/general-photonics-now-luna-innovations

[69]

H. F. Chau, Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate, Phys. Rev. A, 2002, 66(6): 060302 (R)

[70]

K. S. Ranade and G. Alber, Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable biterror rates, J. Phys. A, 2006, 39(7): 1701

[71]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys., 2009, 81(3): 1301

[72]

H. K. Lo and J. Preskill, Security of quantum key distribution using weak coherent states with Nonrandom phases, Quant. Inf. Comput., 2007, 5(6): 431

[73]

Y. Zhao, B. Qi, and H. K. Lo, Experimental quantum key distribution with active phase randomization, Appl. Phys. Lett., 2007, 90(4): 044106

[74]

S. H. Sun and L. M. Liang, Experimental demonstration of an active phase randomization and monitor module for quantum key distribution, Appl. Phys. Lett., 2012, 101(7): 071107

[75]

https://www.idquantique.com/

[76]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, , Field test of quantum key distribution in the Tokyo QKD Network, Opt. Express, 2011, 19(11): 10387

[77]

P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller, and J. E. Nordholt, Longdistance quantum key distribution in optical fibre, New J. Phys., 2006, 8(9): 193

[78]

C. Gobby, Z. L. Yuan, and A. J. Shields, Quantum key distribution over 122 km of standard telecom fiber, Appl. Phys. Lett., 2004, 84(19): 3762

[79]

T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, and R. Namiki, Quantum cryptography using pulsed homodyne detection, Phys. Rev. A, 2003, 68(4): 042331

[80]

S. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys., 2005, 77(2): 513

[81]

https://www.magiqtech.com/

[82]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, High rate, longdistance quantum key distribution over 250 km of ultralow loss fibres, New J. Phys., 2009, 11(7): 075003

[83]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, Quantum key distribution and 1 Gbps data encryption over a single fibre, New J. Phys., 2010, 12(6): 063027

[84]

R. Namiki and T. Hirano, Security of quantum cryptography using balanced homodyne detection, Phys. Rev. A, 2003, 67(2): 022308

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (828KB)

1200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/