Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices
Lin-Mei Liang(梁林海), Shi-Hai Sun(孙仕海), Mu-Sheng Jiang(江木生), Chun-Yan Li(李春燕)
Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].
quantum key distribution / quantum cryptography / quantum hacking
[1] |
C. H. Bennett and G. Brassard, Quantum Cryptography: Public key distribution and coin tossing, in: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing , Bangalore, India (IEEE, New York), 1984, pp 175−179
|
[2] |
H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science, 1999, 283(5410): 2050
CrossRef
ADS
Google scholar
|
[3] |
P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett., 2000, 85(2): 441
CrossRef
ADS
Google scholar
|
[4] |
D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, Security of quantum key distribution with imperfect devices, Quant. Inf. Comput., 2004, 4(5): 325
|
[5] |
H. Inamori, N. Lütkenhaus, and D. Mayers, Unconditional security of practical quantum key distribution, Eur. Phys. J. D, 2007, 41(3): 599
CrossRef
ADS
Google scholar
|
[6] |
M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, Telecommunications-band heralded single photons from a silicon nanophotonic chip, Appl. Phys. Lett., 2012, 100(26): 261104
CrossRef
ADS
Google scholar
|
[7] |
J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, High purity bright single photon source, Opt. Express, 2007, 15(13): 7940
CrossRef
ADS
Google scholar
|
[8] |
F. Hargart, C. A. Kessler, T. Schwarzbäck, E. Koroknay, S. Weidenfeld, M. Jetter, and P. Michler, Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter, Appl. Phys. Lett., 2013, 102(1): 011126
CrossRef
ADS
Google scholar
|
[9] |
M. M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, and S. Montangero, Room-temperature Rydberg single-photon source, Phys. Rev. A, 2013, 87(5): 053412
CrossRef
ADS
Google scholar
|
[10] |
S. Deshpande and P. Bhattacharya, An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K, Appl. Phys. Lett., 2013, 103(24): 241117
CrossRef
ADS
Google scholar
|
[11] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 1991, 67(6): 661
CrossRef
ADS
Google scholar
|
[12] |
F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A, 2004, 69(5): 052319
CrossRef
ADS
Google scholar
|
[13] |
G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China, 2007, 2(3): 251
CrossRef
ADS
Google scholar
|
[14] |
F. G. Deng and G. L. Long, Controlled order rearrangement encryption for quantum key distribution, Phys. Rev. A, 2003, 68(4): 042315
CrossRef
ADS
Google scholar
|
[15] |
B. Huttner, N. Imoto, N. Gisin, and T. Mor, Quantum cryptography with coherent states, Phys. Rev. A, 1995, 51(3): 1863
CrossRef
ADS
Google scholar
|
[16] |
G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett., 2000, 85(6): 1330
CrossRef
ADS
Google scholar
|
[17] |
N. Lütkenhaus and M. Jahma, Quantum key distribution with realistic states: photon-number statistics in the photonnumber splitting attack, New J. Phys., 2002, 4: 44
CrossRef
ADS
Google scholar
|
[18] |
W. T. Liu, S. H. Sun, L. M. Liang, and J. M. Yuan, Proof-ofprinciple experiment of a modified photon-number-splitting attack against quantum key distribution, Phys. Rev. A, 2011, 83(4): 042326
CrossRef
ADS
Google scholar
|
[19] |
W. Y. Hwang, Quantum key distribution with high loss: Toward global secure communication, Phys. Rev. Lett., 2003, 91(5): 057901
CrossRef
ADS
Google scholar
|
[20] |
H. K. Lo, X. F. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett., 2005, 94(23): 230504
CrossRef
ADS
Google scholar
|
[21] |
X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A, 2005, 72(1): 012326
CrossRef
ADS
Google scholar
|
[22] |
X. B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett., 2005, 94(23): 230503
CrossRef
ADS
Google scholar
|
[23] |
C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, Experimental long-distance decoy-state quantum key distribution based on polarization encoding, Phys. Rev. Lett., 2007, 98(1): 010505
CrossRef
ADS
Google scholar
|
[24] |
T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. Rarity, A. Zeilinger, and H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett., 2007, 98(1): 010504
CrossRef
ADS
Google scholar
|
[25] |
D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. Lita, S. Nam, and J. Nordholt, Long-distance decoy-state quantum key distribution in optical fiber, Phys. Rev. Lett., 2007, 98(1): 010503
CrossRef
ADS
Google scholar
|
[26] |
Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, Experimental quantum key distribution with decoy states, Phys. Rev. Lett., 2006, 96(7): 070502
CrossRef
ADS
Google scholar
|
[27] |
Y. Liu, T. Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, C. Z. Peng, K. Chen, Z. B. Chen, and J. W. Pan, Decoy-state quantum key distribution with polarized photons over 200 km, Opt. Express, 2010, 18(8): 8587
CrossRef
ADS
Google scholar
|
[28] |
Y. Zhao, B. Qi, and H. K. Lo, Quantum key distribution with an unknown and untrusted source, Phys. Rev. A, 2008, 77(5): 052327
CrossRef
ADS
Google scholar
|
[29] |
X. Peng, H. Jiang, B. J. Xu, X. F. Ma, and H. Guo, Experimental quantum-key distribution with an untrusted source, Opt. Lett., 2008, 33(18): 2077
CrossRef
ADS
Google scholar
|
[30] |
B. J. Xu, X. Peng, and H. Guo, Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system, Phys. Rev. A, 2010, 82(4): 042301
CrossRef
ADS
Google scholar
|
[31] |
X. B. Wang, Decoy-state quantum key distribution with large random errors of light intensity, Phys. Rev. A, 2007, 75(5): 052301
CrossRef
ADS
Google scholar
|
[32] |
X. B. Wang, C. Z. Peng, and J. W. Pan, Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source, Appl. Phys. Lett., 2007, 90(3): 031110
CrossRef
ADS
Google scholar
|
[33] |
X. B. Wang, L. Yang, C. Z. Peng, and J. W. Pan, Decoystate quantum key distribution with both source errors and statistical fluctuations, New J. Phys., 2009, 11(7): 075006
CrossRef
ADS
Google scholar
|
[34] |
X. B. Wang, C. Z. Peng, J. Zhang, L. Yang, and J. W. Pen, General theory of decoy-state quantum cryptography with source errors, Phys. Rev. A, 2008, 77(4): 042311
CrossRef
ADS
Google scholar
|
[35] |
S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, Information leakage via side channels in freespace BB84 quantum cryptography, New J. Phys., 2009, 11(6): 065001
CrossRef
ADS
Google scholar
|
[36] |
C. H. F. Fung, B. Qi, K. Tamaki, and H. K. Lo, Phaseremapping attack in practical quantum-key-distribution systems, Phys. Rev. A, 2007, 75(3): 032314
CrossRef
ADS
Google scholar
|
[37] |
F. H. Xu, B. Qi, and H. K. Lo, Experimental demonstration of phase-remapping attack in a practical quantum key distribution system, New J. Phys., 2010, 12(11): 113026
CrossRef
ADS
Google scholar
|
[38] |
H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources, Phys. Rev. A, 2011, 84(6): 062308
CrossRef
ADS
Google scholar
|
[39] |
Y. Zhao, C. H. Fung, B. Qi, C. Chen, and H. K. Lo, Quantum hacking: Experimental demonstration of timeshift attack against practical quantum-key-distribution systems, Phys. Rev. A, 2008, 78(4): 042333
CrossRef
ADS
Google scholar
|
[40] |
V. Makarov, A. Anisimov, and J. Skaar, Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A, 2006, 74(2): 022313
CrossRef
ADS
Google scholar
|
[41] |
V. Makarov and J. Skaar, Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols, Quant. Inf. Comput., 2008, 8(6−7): 0622
|
[42] |
L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics, 2010, 4(10): 686
CrossRef
ADS
Google scholar
|
[43] |
V. Makarov, Controlling passively quenched single photon detectors by bright light, New J. Phys., 2009, 11(6): 065003
CrossRef
ADS
Google scholar
|
[44] |
N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Device calibration impacts security of quantum key distribution, Phys. Rev. Lett., 2011, 107(11): 110501
CrossRef
ADS
Google scholar
|
[45] |
I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography system, Nat. Commun., 2011, 2: 349
CrossRef
ADS
Google scholar
|
[46] |
C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys., 2012, 84(2): 621
CrossRef
ADS
Google scholar
|
[47] |
B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A, 2007, 76(5): 052323
CrossRef
ADS
Google scholar
|
[48] |
Z. Zhang and P. L. Voss, Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems, Opt. Express, 2009, 17(14): 12090
CrossRef
ADS
Google scholar
|
[49] |
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantum-keydistribution system with a heterodyne protocol, Phys. Rev. A, 2013, 87(5): 052309
CrossRef
ADS
Google scholar
|
[50] |
J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A, 2013, 87(6): 062329
CrossRef
ADS
Google scholar
|
[51] |
X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A, 2013, 88(2): 022339
CrossRef
ADS
Google scholar
|
[52] |
A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett., 2007, 98(23): 230501
CrossRef
ADS
Google scholar
|
[53] |
S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-independent quantum key distribution secure against collective attacks, New J. Phys., 2009, 11(4): 045021
CrossRef
ADS
Google scholar
|
[54] |
H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett., 2012, 108(13): 130503
CrossRef
ADS
Google scholar
|
[55] |
K. Tamaki, H. K. Lo, C. H. F. Fung, and B. Qi, Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw, Phys. Rev. A, 2012, 85(4): 042307
CrossRef
ADS
Google scholar
|
[56] |
X. F. Ma and M. Razavi, Alternative schemes for measurement-device-independent quantum key distribution, Phys. Rev. A, 2012, 86(6): 062319
CrossRef
ADS
Google scholar
|
[57] |
S. H. Sun, M. Gao, C. Y. Li, and L. M. Liang, Practical decoy-state measurement-device-independent quantum key distribution, Phys. Rev. A, 2013, 87(5): 052329
CrossRef
ADS
Google scholar
|
[58] |
Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett., 2013, 111(13): 130502
CrossRef
ADS
Google scholar
|
[59] |
A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, Real-world two-photon interference and proofof-principle quantum key distribution immune to detector attacks, Phys. Rev. Lett., 2013, 111(13): 130501
CrossRef
ADS
Google scholar
|
[60] |
Z. Y. Tang, Z. F. Liao, F. H. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, arXiv: 1306.6134, 2013
|
[61] |
S. H. Sun, M. S. Jiang, and L. M. Liang, Passive Faraday-mirror attack in a practical two-way quantum-keydistribution system, Phys. Rev. A, 2011, 83(6): 062331
CrossRef
ADS
Google scholar
|
[62] |
S. H. Sun, M. Gao, M. S. Jiang, C. Y. Li, and L. M. Liang, Partially random phase attack to the practical twoway quantum-key-distribution system, Phys. Rev. A, 2012, 85(3): 032304
CrossRef
ADS
Google scholar
|
[63] |
M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states, Phys. Rev. A, 2012, 86(3): 032310
CrossRef
ADS
Google scholar
|
[64] |
M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Frequency shift attack on “plug-and-play” quantum key distribution systems, J. Mod. Opt., 2014, 61(2): 147
CrossRef
ADS
Google scholar
|
[65] |
S. H. Sun, M. S. Jiang, and L. M. Liang, Single-photondetection attack on the phase-coding continuous-variable quantum cryptography, Phys. Rev. A, 2012, 86(1): 012305
CrossRef
ADS
Google scholar
|
[66] |
A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryptography, Appl. Phys. Lett., 1997, 70(7): 793
CrossRef
ADS
Google scholar
|
[67] |
https://www.newport.com.cn/f/fiber-optic-faraday-rotator-mirrors
|
[68] |
https://lunainc.com/general-photonics-now-luna-innovations
|
[69] |
H. F. Chau, Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate, Phys. Rev. A, 2002, 66(6): 060302 (R)
CrossRef
ADS
Google scholar
|
[70] |
K. S. Ranade and G. Alber, Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable biterror rates, J. Phys. A, 2006, 39(7): 1701
CrossRef
ADS
Google scholar
|
[71] |
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys., 2009, 81(3): 1301
CrossRef
ADS
Google scholar
|
[72] |
H. K. Lo and J. Preskill, Security of quantum key distribution using weak coherent states with Nonrandom phases, Quant. Inf. Comput., 2007, 5(6): 431
|
[73] |
Y. Zhao, B. Qi, and H. K. Lo, Experimental quantum key distribution with active phase randomization, Appl. Phys. Lett., 2007, 90(4): 044106
CrossRef
ADS
Google scholar
|
[74] |
S. H. Sun and L. M. Liang, Experimental demonstration of an active phase randomization and monitor module for quantum key distribution, Appl. Phys. Lett., 2012, 101(7): 071107
CrossRef
ADS
Google scholar
|
[75] |
https://www.idquantique.com/
|
[76] |
M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui,
CrossRef
ADS
Google scholar
|
[77] |
P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller, and J. E. Nordholt, Longdistance quantum key distribution in optical fibre, New J. Phys., 2006, 8(9): 193
CrossRef
ADS
Google scholar
|
[78] |
C. Gobby, Z. L. Yuan, and A. J. Shields, Quantum key distribution over 122 km of standard telecom fiber, Appl. Phys. Lett., 2004, 84(19): 3762
CrossRef
ADS
Google scholar
|
[79] |
T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, and R. Namiki, Quantum cryptography using pulsed homodyne detection, Phys. Rev. A, 2003, 68(4): 042331
CrossRef
ADS
Google scholar
|
[80] |
S. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys., 2005, 77(2): 513
CrossRef
ADS
Google scholar
|
[81] |
https://www.magiqtech.com/
|
[82] |
D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, High rate, longdistance quantum key distribution over 250 km of ultralow loss fibres, New J. Phys., 2009, 11(7): 075003
CrossRef
ADS
Google scholar
|
[83] |
P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, Quantum key distribution and 1 Gbps data encryption over a single fibre, New J. Phys., 2010, 12(6): 063027
CrossRef
ADS
Google scholar
|
[84] |
R. Namiki and T. Hirano, Security of quantum cryptography using balanced homodyne detection, Phys. Rev. A, 2003, 67(2): 022308
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |