A generalized two-mode entangled state: Its generation, properties, and applications

Kai-Min Zheng, Shi-You Liu, Hao-Liang Zhang, Cun-Jin Liu, Li-Yun Hu

PDF(241 KB)
PDF(241 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 451-459. DOI: 10.1007/s11467-014-0419-z
RESEARCH ARTICLE
RESEARCH ARTICLE

A generalized two-mode entangled state: Its generation, properties, and applications

Author information +
History +

Abstract

Using the technique of integration within an ordered product of operators we construct a generalized two-mode entangled state, which can be generated by an asymmetrical beam splitter (BS). Some important properties of this state, such as orthogonality and Schmidt decomposition, are also discussed by deriving the expression of BS operator in coordinate representation. As its applications, to conjugate state, obtain operator identities, generate new squeezing operators (squeezed state) are also presented. It is shown that the fidelity of quantum teleportation can be enhanced under certain case by using the asymmetrical new squeezed state as entangled resource.

Graphical abstract

Keywords

entangled state / beam splitter (BS) / quantum teleportation

Cite this article

Download citation ▾
Kai-Min Zheng, Shi-You Liu, Hao-Liang Zhang, Cun-Jin Liu, Li-Yun Hu. A generalized two-mode entangled state: Its generation, properties, and applications. Front. Phys., 2014, 9(4): 451‒459 https://doi.org/10.1007/s11467-014-0419-z

References

[1]
W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, 1990
[2]
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev., 1935, 47(10): 777
CrossRef ADS Google scholar
[3]
H. Y. Fan, J. H. Chen, and T. Q. Song, New parametrized entangled state representations and their applications, Int. J. Theor. Phys., 2003, 42(8): 1773
CrossRef ADS Google scholar
[4]
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A, 1994, 49(2): 704
CrossRef ADS Google scholar
[5]
H. Y. Fan and N. Jiang, Three-mode entangled state representation of continuum variables and optical four-wave mixing, Int. J. Theor. Phys., 2004, 43(11): 2275
CrossRef ADS Google scholar
[6]
L. Y. Hu and H. Fan, New tripartite entangled state generated by an asymmetric beam splitter and a parametric downconversion amplifier, J. Phys.: Math. Gen., 2006, 39(45): 14133
CrossRef ADS Google scholar
[7]
L. Y. Hu and H. Y. Fan, A new bipartite coherent-entangled state generated by an asymmetric beamsplitter and its applications, J. Phys.: At. Mol. Opt. Phys., 2007, 40(11): 2099
CrossRef ADS Google scholar
[8]
P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett., 2000, 84(15): 3482
CrossRef ADS Google scholar
[9]
K. -P. Marzlin and J. Audretsch , Collapse and revival of ultracold atoms in a microwave cavity and of photons in parametric down-conversion, Phys. Rev. A, 1998, 57(2): 1333
CrossRef ADS Google scholar
[10]
P. Kok and S. L. Braunstein, Postselected versus nonpostselected quantum teleportation using parametric downconversion, Phys. Rev. A, 2000, 61(4): 42304
CrossRef ADS Google scholar
[11]
M. Atature, G. Di Giuseppe, M. Shaw, A. Sergienko, B. Saleh, and M. Teich, Multiparameter entanglement in femtosecond parametric down-conversion, Phys. Rev. A, 2002, 65(2): 023808
CrossRef ADS Google scholar
[12]
T. B. Pittman, B. C. Jacobs, and J. D. Franson, Single photons on pseudodemand from stored parametric downconversion, Phys. Rev. A, 2002, 66(4): 042303
CrossRef ADS Google scholar
[13]
T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, Polarization-entangled W state using parametric downconversion, Phys. Rev. A, 2002, 66(6): 064301
CrossRef ADS Google scholar
[14]
Y. Kim, Quantum interference with beamlike type-II spontaneous parametric down-conversion, Phys. Rev. A, 2003, 68(1): 013804
CrossRef ADS Google scholar
[15]
P. A. M. Dirac, The Prnciple of Quantum Mechanics, 4th Ed., Oxford University Press, 1958
[16]
H. Y. Fan, Entanglement swapping transformation and swapping operator for two pairs of EPR entangled states with continuous variables, Phys. Lett. A, 2001, 286(2-3): 81
CrossRef ADS Google scholar
[17]
H. Y. Fan and L. Y. Hu, Correspondence between quantumoptical transform and classical–optical transform explored by developing Dirac’s symbolic method, Front. Phys., 2012, 7(3): 261
CrossRef ADS Google scholar
[18]
S. L. Braunstein and H. J. Kimble, Teleportation of continuous quantum variables, Phys. Rev. Lett., 1998, 80(4): 869
CrossRef ADS Google scholar
[19]
S. Bose, V. Verdral, and P. L. Knight, Multiparticle generalization of entanglement swapping, Phys. Rev. A, 1998, 57(2): 822
CrossRef ADS Google scholar
[20]
A. V. Thapliyal, Multipartite pure-state entanglement, Phys. Rev. A, 1999, 59(5): 3336
CrossRef ADS Google scholar
[21]
C. Macchiavello, G. M. Palma, and A. Zeilinger (Eds.), Quantum Information Theory, Singapore: World Scientific, 2001
[22]
H. Y. Fanand X. Ye, Common eigenstates of two particles’ center-of-mass coordinates and mass-weighted relative momentum, Phys. Rev. A, 1995, 51(4): 3343
CrossRef ADS Google scholar
[23]
H. Y. Fan, Time evolution of the Wigner function in the entangled-state representation, Phys. Rev. A, 2002, 65(6): 064102
CrossRef ADS Google scholar
[24]
H. Y. Fanand B. Z. Chen, Solving some two-body dynamical problems in 〈ζ|-〈η| representation, Phys. Rev. A, 1996, 53(5): 2948
CrossRef ADS Google scholar
[25]
H. Y. Fan, Squeezed states: Operators for two types of one- and two-mode squeezing transformations, Phys. Rev. A, 1990, 41(3): 1526
CrossRef ADS Google scholar
[26]
S.-Y. Leeand H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. A, 2010, 82(5): 053812
CrossRef ADS Google scholar
[27]
P. T. Cochrane and G. J. Milburn, Teleportation with the entangled states of a beam splitter, Phys. Rev. A, 2001, 64(6): 062312
CrossRef ADS Google scholar
[28]
J. Preskill, Lecture Notes for Physics 229: Quantum Information and Computation, California Institute of Technology, 1998
[29]
R. R. Puri, Mathematical Methods of Quantum Optics, Appendix A, Springer-Verlag, 2001
CrossRef ADS Google scholar
[30]
M. O. Scullyand M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
CrossRef ADS Google scholar
[31]
P. Mariaand T. A. Marian, Continuous-variable teleportation in the characteristic-function description, Phys. Rev. A, 2006, 74(4): 042306
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(241 KB)

Accesses

Citations

Detail

Sections
Recommended

/