Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding
Ondrej Stranik, Jacqueline Jatschka, Andrea Csáki, Wolfgang Fritzsche
Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding
Metal nanostructures exhibit special optical resonance modes originating from the subwavelength confinement of conductive electrons in the material. These resonance modes represent a strong research focus due to their application potential in optics and sensing application. In this short review recent achievements of our group in this field are highlighted. A wet-chemistry approach synthesis of advanced metallic nanostructures will be introduced and their exact positioning and manipulation by electric field is shown. Next, the application of these nanostructures for a detection of small molecules will be described in several examples. Also, it will be shown that metal nanostructures can be used for sub-wavelength light focusing and for efficient energy coupling into polymer chains.
plasmonics / sensing / nanostructures fabrication / energy guiding
[1] |
S. J. Orfanidis, Electromagnetic Waves and Antennas, www.ece.rutgers.edu/orfanidi/ewa, 1999-2008
|
[2] |
U. Kreibig and M. Vollmer, Optical properties of Metal Clusters, Springer Series in Materials Science, Berlin Heidelberg: Springer-Verlag, 1995
CrossRef
ADS
Google scholar
|
[3] |
A. E. Rider, K. Ostrikov, and S. A. Furman, Plasmas meet plasmonics- Everything old is new again, Eur. Phys. J. D, 2012, 66(9): 226
CrossRef
ADS
Google scholar
|
[4] |
S. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007
|
[5] |
M. Dragoman and D. Dragoman, Plasmonics: Applications to nanoscale terahertz and optical devices, Prog. Quantum Electron., 2008, 32(1): 1
CrossRef
ADS
Google scholar
|
[6] |
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by small Particles, John Willey & Sons, Inc., 1983
|
[7] |
H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Vol. 111 of Springer tracts in modern physics, 1988
|
[8] |
H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Silver nanowires as surface plasmon resonators, Phys. Rev. Lett., 2005, 95(25): 257403
CrossRef
ADS
Google scholar
|
[9] |
H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Plasmonic nanostructures: Artificial molecules, Acc. Chem. Res., 2007, 40(1): 53
CrossRef
ADS
Google scholar
|
[10] |
T. Wriedt, Light scattering theories and computer codes, J. Quant. Spectrosc. Radiat. Transf., 2009, 110(11): 833
CrossRef
ADS
Google scholar
|
[11] |
J. M. Montgomery, T. W. Lee, and S. K. Gray, Theory and modeling of light interactions with metallic nanostructures, J. Phys.: Condens. Matter, 2008, 20(32): 323201
CrossRef
ADS
Google scholar
|
[12] |
M. KaramehmedovićR. Schuh, V. Schmidt, T. Wriedt, C. Matyssek, W. Hergert, A. Stalmashonak, G. Seifert, and O. Stranik, Comparison of numerical methods in near-field computation for metallic nanoparticles, Opt. Express, 2011, 19(9): 8939
CrossRef
ADS
Google scholar
|
[13] |
J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M. Mishrikey, Comparison of numerical methods for the analysis of plasmonic structures, J. Comput. Theor. Nanosci., 2009, 6(3): 763
CrossRef
ADS
Google scholar
|
[14] |
L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, Metal nanoshells, Ann. Biomed. Eng., 2006, 34(1): 15
CrossRef
ADS
Google scholar
|
[15] |
G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, Rational selection of gold nanorod geometry for label-free plasmonic biosensors, ACS Nano, 2009, 3(4): 795
CrossRef
ADS
Google scholar
|
[16] |
X. Le Guevel, F. Y. Wang, O. Stranik, R. Nooney, V. Gubala, C. McDonagh, and B. D. MacCraith, Synthesis, stabilization, and functionalization of silver nanoplates for biosensor applications, J. Phys. Chem. C, 2009, 113(37): 16380
CrossRef
ADS
Google scholar
|
[17] |
D. Aherne, M. Gara, J. M. Kelly, and Y. K. Gun’ko, From Ag nanoprisms to triangular AuAg nanoboxes, Adv. Funct. Mater., 2010, 20(8): 1329
CrossRef
ADS
Google scholar
|
[18] |
C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nat. Biotechnol., 2005, 23(6): 741
CrossRef
ADS
Google scholar
|
[19] |
W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas, Nano Lett., 2010, 10(3): 1006
CrossRef
ADS
Google scholar
|
[20] |
S. Bidault, F. J. Abajo, and A. Polman, Plasmon-based nanolenses assembled on a well-defined DNA template, J. Am. Chem. Soc., 2008, 130(9): 2750
CrossRef
ADS
Google scholar
|
[21] |
Evanoff and G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays, ChemPhysChem, 2005, 6(7): 1221
CrossRef
ADS
Google scholar
|
[22] |
B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, Plasmonic radiance: Probing structure at the ångström scale with visible light, Nano Lett., 2013, 13(2): 497
CrossRef
ADS
Google scholar
|
[23] |
K. Bao, N. A. Mirin, and P. Nordlander, Fano resonances in planar silver nanosphere clusters, Appl. Phys. A, 2010, 100(2): 333
CrossRef
ADS
Google scholar
|
[24] |
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, Transition from isolated to collective modes in plasmonic oligomers, Nano Lett., 2010, 10(7): 2721
CrossRef
ADS
Google scholar
|
[25] |
S. A. Maier, Plasmonics: The benefits of darkness, Nat. Mater., 2009, 8(9): 699
CrossRef
ADS
Google scholar
|
[26] |
H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zaech, and B. Kasemo, Hole-mask colloidal lithography, Adv. Mater., 2007, 19(23): 4297
CrossRef
ADS
Google scholar
|
[27] |
T. Sannomiya, P. K. Sahoo, D. I. Mahcicek, H. H. Solak, C. Hafner, D. Grieshaber, and J. Vörös, Biosensing by densely packed and optically coupled plasmonic particle arrays, Small, 2009, 5(16): 1889
CrossRef
ADS
Google scholar
|
[28] |
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves, Phys. Rev. Lett., 2005, 95(4): 117401
CrossRef
ADS
Google scholar
|
[29] |
S. A. Maier, P. G. Kik, and H. A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides, Phys. Rev. B, 2003, 67(20): 205402
CrossRef
ADS
Google scholar
|
[30] |
B. Turker, H. Guner, S. Ayas, O. O. Ekiz, H. Acar, M. O. Guler, and A. Dâna, Grating coupler integrated photodiodes for plasmon resonance based sensing, Lab Chip, 2011, 11(2): 282
CrossRef
ADS
Google scholar
|
[31] |
M. Piliarik, M. Vala, I. Tichý, and J. Homola, Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons, Biosens. Bioelectron., 2009, 24(12): 3430
CrossRef
ADS
Google scholar
|
[32] |
K. L. Lee, P. W. Chen, S. H. Wu, J. B. Huang, S. Y. Yang, and P. K. Wei, Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films, ACS Nano, 2012, 6(4): 2931
CrossRef
ADS
Google scholar
|
[33] |
A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Optical transmission properties of a single subwavelength aperture in a real metal, Opt. Commun., 2004, 239(1-3): 61
CrossRef
ADS
Google scholar
|
[34] |
W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination, Nano Lett., 2009, 9(12): 4320
CrossRef
ADS
Google scholar
|
[35] |
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, A new generation of sensors based on extraordinary optical transmission, Acc. Chem. Res., 2008, 41(8): 1049
CrossRef
ADS
Google scholar
|
[36] |
L. N. Shi, A. Kabashin, and M. Skorobogatiy, Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: Comparison of the near and far field phase detection strategies, Sens. Actuators B: Chem., 2009, 143(1): 76
CrossRef
ADS
Google scholar
|
[37] |
P. Biagioni, J. S. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys., 2012, 75(2): 024402
CrossRef
ADS
Google scholar
|
[38] |
P. Bharadwaj, B. Deutsch, and L. Novotny, Optical antennas, Adv. Opt. Photon., 2009, 1(3): 438
CrossRef
ADS
Google scholar
|
[39] |
S. Bozhevolnyi, Plasmonic Nanoguides and Circuits, Pan Stanford, 2009
|
[40] |
H. Chen, G. C. Schatz, and M. A. Ratner, Experimental and theoretical studies of plasmon-molecule interactions, Rep Prog. Phys., 2012, 75(9): 096402
CrossRef
ADS
Google scholar
|
[41] |
L. Novotny and B. Hecht, Principles of Nano-Optics, 2006
|
[42] |
A. Zayats and D. Richards, Nano-optics and near-field optical microscopy, Artech House, 2009
|
[43] |
C. Rockstuhl, S. Fahr, and F. Lederer, Absorption enhancement in solar cells by localized plasmon polaritons, J. Appl Phys., 2008, 104(12): 123102
CrossRef
ADS
Google scholar
|
[44] |
P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett., 2006, 96(11): 113002
CrossRef
ADS
Google scholar
|
[45] |
C. McDonagh, O. Stranik, R. Nooney, and B. D. Maccraith, Nanoparticle strategies for enhancing the sensitivity of fluorescence-based biochips, Nanomedicine, 2009, 4(6): 645
CrossRef
ADS
Google scholar
|
[46] |
J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, Advances in surface-enhanced fluorescence, J. Fluoresc., 2004, 14(4): 425
CrossRef
ADS
Google scholar
|
[47] |
W. Deng and E. M. Goldys, Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences, Langmuir, 2012, 28(27): 10152
CrossRef
ADS
Google scholar
|
[48] |
K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, SERS: A versatile tool in chemical and biochemical diagnostics, Anal. Bioanal. Chem., 2008, 390(1): 113
CrossRef
ADS
Google scholar
|
[49] |
L. Tong, T. Zhu, and Z. Liu, Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles, Chem. Soc. Rev., 2011, 40(3): 1296
CrossRef
ADS
Google scholar
|
[50] |
M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nat. Photonics, 2012, 6(11): 737
CrossRef
ADS
Google scholar
|
[51] |
Z. Jacob, Quantum plasmonics, MRS Bull., 2012, 37(8): 761
CrossRef
ADS
Google scholar
|
[52] |
J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, Nanofabrication of Plasmonic Structures, Vol. 60 of Annua Review of Physical Chemistry, pp. 147-165, Palo Alto: Annual Reviews, 2009
|
[53] |
M. B. Cortie and A. M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles, Chem. Rev., 2011, 111(6): 3713
CrossRef
ADS
Google scholar
|
[54] |
J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 1951, 11: 55
CrossRef
ADS
Google scholar
|
[55] |
G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature, 1973, 241: 20
|
[56] |
A. Csáki, S. Berg, N. Jahr, C. Leiterer, T. Schneider, A. Steinbrück, D. Zopf, and W. Fritzsche, Plasmonic Nanoparticles- Noble Material for SensoricApplications, Ch. 9, pp. 245-261, Nova Science Publishers, 2010
|
[57] |
A. Steinbrück, A. Csáki, and W. Fritzsche, Metal Nanoparticles for Molecular Plasmonics, Vol. 2010 of Reviews in Plasmonics, Ch. 1, pp. 1-37, New York: Springer, 2012
|
[58] |
A. Steinbrück, A. Csáki, G. Festag, and W. Fritzsche, Preparation and optical characterization of coreshell bimetal nanoparticles, Plasmonics, 2006, 1(1): 79
CrossRef
ADS
Google scholar
|
[59] |
A. Steinbrück, A. Csáki, K. Ritter, M. Leich, J. M. Köhler, and W. Fritzsche, Gold and goldâ“silver core-shell nanoparticle constructs with defined size based on DNA hybridization, J. Nanopart. Res., 2009, 11(3): 623
CrossRef
ADS
Google scholar
|
[60] |
W. Fritzsche, Molecular Plasmonics (Editorial to Special Issue “Molecular Plasmonics” of the Journal Plasmonics), Plasmonics, 2006, 1(1): 3
CrossRef
ADS
Google scholar
|
[61] |
A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, Jr Bruchez, and P. G. Schultz, Organization of “nanocrystal molecules” using DNA, Nature, 1996, 382(6592): 609
CrossRef
ADS
Google scholar
|
[62] |
A. Csáki, G. Maubach, D. Born, J. Reichert, and W. Fritzsche, DNA-based molecular nanotechnology, Single Molecules, 2002, 3(5-6): 275
CrossRef
ADS
Google scholar
|
[63] |
J. Vesenka, D. Bagg, A. Wolff, A. Reichert, R. Moeller, and W. Fritzsche, Auto-orientation of G-wire DNA on mica, Colloids Surf. B Biointerfaces, 2007, 58(2): 256
CrossRef
ADS
Google scholar
|
[64] |
S. I. Tanaka, W. Fritzsche, Y. Sako, and T. Yanagida, Synthesis of long-template DNA using enzymatic reaction for regular alignment of Au-nanoparticles, Chem. Lett., 2006, 35(11): 1290
CrossRef
ADS
Google scholar
|
[65] |
A. Steinbrück, A. Csáki, K. Ritter, M. Leich, J. M. Köhler, and W. Fritzsche, Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and aminofunctionalized oligonucleotides, J. Biophoton., 2008, 1(2): 104
CrossRef
ADS
Google scholar
|
[66] |
P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, 2006, 440(7082): 297
CrossRef
ADS
Google scholar
|
[67] |
A. Knauer, A. Thete, S. Li, H. Romanus, A. Csáki, W. Fritzsche, and J. M. Köhler, Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis, Chem. Eng. J., 2011, 166(3): 1164
CrossRef
ADS
Google scholar
|
[68] |
A. Knauer, A. Csáki, F. Möller, C. Huhn, W. Fritzsche, and J. M. Köhler, Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties, J. Phys. Chem. C, 2012, 116(16): 9251
CrossRef
ADS
Google scholar
|
[69] |
A. Knauer, S. Schneider, F. Möller, A. Csáki, W. Fritzsche, and J. M. Köhler, Screening of plasmonic properties of composed metal nanoparticles by combinatorial synthesis in micro-fluid segment sequences, Chem. Eng. J., 2013, 227: 80
CrossRef
ADS
Google scholar
|
[70] |
S. G. Penn, L. He, and M. J. Natan, Nanoparticles for bioanalysis, Curr. Opin. Chem. Biol., 2003, 7(5): 609
CrossRef
ADS
Google scholar
|
[71] |
G. Doria, M. Larguinho, J. T. Dias, E. Pereira, R. Franco, and P. V. Baptista, Gold-silver-alloy nanoprobes for onepot multiplex DNA detection, Nanotechnology, 2010, 21(25): 255101
CrossRef
ADS
Google scholar
|
[72] |
E. Hutter and J. H. Fendler, Explotation of localized surface plasmon resonance, Adv. Mater., 2004, 16(19): 16851706
CrossRef
ADS
Google scholar
|
[73] |
A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties, Opt. Mater. Express, 2012, 2(8): 1050
CrossRef
ADS
Google scholar
|
[74] |
S. Christke, C. Katzer, V. Grosse, F. Schmidl, G. Schmidl, W. Fritzsche, J. Petschulat, T. Pertsch, and M. Rettenmayr, Optical resonances of self-organized monocrystalline Au nanoparticles embedded in SrTiO3 matrix, Opt. Mater Express, 2011, 1(5): 890
CrossRef
ADS
Google scholar
|
[75] |
C. Leiterer, G. Broenstrup, N. Jahr, M. Urban, C. Arnold, S. Christiansen, and W. Fritzsche, Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique, J. Nanopart. Res., 2013, 15(5): 1628
CrossRef
ADS
Google scholar
|
[76] |
C. Leiterer, S. Berg, A. P. Eskelinen, A. Csáki, M. Urban, P. Torma, and W. Fritzsche, Assembling gold nanoparticle chains using an AC electrical field: Electrical detection of organic thiols, Sens. Actuators B: Chem., 2013, 176: 368
CrossRef
ADS
Google scholar
|
[77] |
A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers, Small, 2010, 6(22): 2584
|
[78] |
K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications, IEEE Sens. J., 2012, 12(1): 218
CrossRef
ADS
Google scholar
|
[79] |
B. Seise, A. Csáki, A. Schwuchow, W. Fritzsche, K. Weber, D. Cialla, and J. Popp, Microstructured optical fibre as biosensor for pathogen detection on DNA-level, Biomedical Engineering-Biomedizinische Technik, Vol. 57, 2012
|
[80] |
A. Kuzyk, Dielectrophoresis at the nanoscale, Electrophoresis, 2011, 32(17): 2307
|
[81] |
A. Wolff, C. Leiterer, A. Csaki, and W. Fritzsche, Dielectrophoretic manipulation of DNA in microelectrode gaps for single-molecule constructs, Front. Biosci., 2008, 13(13): 6834
CrossRef
ADS
Google scholar
|
[82] |
G. Brönstrup, C. Leiterer, N. Jahr, C. Gutsche, A. Lysov, I. Regolin, W. Prost, F. J. Tegude, W. Fritzsche, and S. Christiansen, A precise optical determination of nanoscale diameters of semiconductor nanowires, Nanotechnology, 2011, 22(38): 385201
CrossRef
ADS
Google scholar
|
[83] |
G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, Optical properties of individual sili-con nanowires for photonic devices, ACS Nano, 2010, 4(12): 7113
CrossRef
ADS
Google scholar
|
[84] |
J. Homola, Surface Plasmon Resonance Based Sensors, Springer, 2006
CrossRef
ADS
Google scholar
|
[85] |
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater., 2008, 7(6): 442
CrossRef
ADS
Google scholar
|
[86] |
A. G. Brolo, Plasmonics for future biosensors, Nat. Photonics, 2012, 6(11): 709
CrossRef
ADS
Google scholar
|
[87] |
T. Chung, S. Y. Lee, E. Y. Song, H. Chun, and B. Lee, Plasmonic nanostructures for nano-scale bio-sensing, Sensors, 2011, 11(11): 10907
CrossRef
ADS
Google scholar
|
[88] |
S. Gao and N. Koshizaki, Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing, Anal. Bioanal. Chem., 2011, 399(1): 91
CrossRef
ADS
Google scholar
|
[89] |
C. Höppener and L. Novotny, Exploiting the light-metal interaction for biomolecular sensing and imaging, Q. Rev. Biophys., 2012, 45(2): 209
CrossRef
ADS
Google scholar
|
[90] |
C. Inhee and C. Yeonho, Plasmonic nanosensors: Review and prospect, IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1110
CrossRef
ADS
Google scholar
|
[91] |
K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev., 2011, 111(6): 3828
CrossRef
ADS
Google scholar
|
[92] |
E. Ringe, B. Sharma, A. I. Henry, L. D. Marks, and R. P. Van Duyne, Single nanoparticle plasmonics, Phys. Chem Chem. Phys., 2013, 15(12): 4110
CrossRef
ADS
Google scholar
|
[93] |
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Nanostructured plasmonic sensors, Chem. Rev., 2008, 108(2): 494
CrossRef
ADS
Google scholar
|
[94] |
T. Schneider, N. Jahr, J. Jatschka, A. Csaki, O. Stranik, and W. Fritzsche, Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers, J. Nanopart. Res., 2013, 15(4): 1
CrossRef
ADS
Google scholar
|
[95] |
A. Steinbrück, O. Stranik, A. Csáki, and W. Fritzsche, Sensoric potential of gold-silver core-shell nanoparticles, Anal. Bioanal. Chem., 2011, 401(4): 1241
CrossRef
ADS
Google scholar
|
[96] |
N. Jahr, M. Anwar, O. Stranik, N. Hädrich, N. Vogler, A. Csáki, J. Popp, and W. Fritzsche, Spectroscopy on single metallic nanoparticles using sub-wavelength apertures, J. Phys. Chem. C, 2013, 117(15): 7751
CrossRef
ADS
Google scholar
|
[97] |
N. Jahr, N. Hädrich, M. Anwar, A. Csáki, O. Stranik, and W. Fritzsche, Optical single-particle detection in nanoholes towards simple parallel detection of molecular binding events, Int. J. Environ. Anal. Chem., 2013, 93(2): 140
CrossRef
ADS
Google scholar
|
[98] |
R. Möller, A. Csáki, J. M. Köhler, and W. Fritzsche, Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement, Langmuir, 2001, 17(18): 5426
CrossRef
ADS
Google scholar
|
[99] |
G. Festag, T. Schüler, R. Möller, A. Csáki, and W. Fritzsche, Growth and percolation of metal nanostructures in electrode gaps leading to conductive paths for electrical DNA analysis, Nanotechnology, 2008, 19(12): 125303
CrossRef
ADS
Google scholar
|
[100] |
S. Julich, M. Riedel, M. Kielpinski, M. Urban, R. Kretschmer, S. Wagner, W. Fritzsche, T. Henkel, R. Möller, and S. Werres, Development of a lab-on-a-chip device for diagnosis of plant pathogens, Biosens. Bioelectron., 2011, 26(10): 4070
CrossRef
ADS
Google scholar
|
[101] |
T. Schüler, R. Kretschmer, S. Jessing, M. Urban, W. Fritzsche, R. Möller, and J. Popp, A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA, Biosens. Bioelectron., 2009, 25(1): 15
CrossRef
ADS
Google scholar
|
[102] |
F. Garwe, U. Bauerschäfer, A. Csáki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, K. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, Optically controlled thermal management on the nanometer length scale, Nanotechnology, 2008, 19(5): 055207
CrossRef
ADS
Google scholar
|
[103] |
A. Csáki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas, Nano Lett., 2007, 7(2): 247
CrossRef
ADS
Google scholar
|
[104] |
J. Wirth, F. Garwe, G. Hähnel, A. Csáki, N. Jahr, O. Stranik, W. Paa, and W. Fritzsche, Plasmonic nanofabrication by long-range excitation transfer via DNA nanowire, Nano Lett., 2011, 11(4): 1505
CrossRef
ADS
Google scholar
|
[105] |
B. Saccà and C. M. Niemeyer, DNA origami: The art of folding DNA, Angew. Chem. Int. Ed. Engl., 2012, 51(1): 58
CrossRef
ADS
Google scholar
|
[106] |
J. J. Toppari, J. Wirth, F. Garwe, O. Stranik, A. Csáki, J. Bergmann, W. Paa, and W. Fritzsche, Plasmonic coupling and long-range transfer of an excitation along a DNA nanowire, ACS Nano, 2013, 7(2): 1291
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |