On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models

Raúl Machado

Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 490 -510.

PDF (697KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 490 -510. DOI: 10.1007/s11467-014-0417-1
RESEARCH ARTICLE

On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models

Author information +
History +
PDF (697KB)

Abstract

The influence of the use of the generalized Hermite polynomial on the Hermite-based lattice Boltzmann (LB) construction approach, lattice sets, the thermal weights, moments and the equilibrium distribution function (EDF) are addressed. A new moment system is proposed. The theoretical possibility to obtain a unique high-order Hermite-based singel relaxation time LB model capable to exactly match some first hydrodynamic moments thermally i) on-Cartesian lattice, ii) with thermal weights in the EDF, iii) whilst the highest possible hydrodynamic moments that are exactly matched are obtained with the shortest on-Cartesian lattice sets with some fixed real-valued temperatures, is also analyzed.

Graphical abstract

Keywords

lattice Boltzmann / fluid dynamics / kinetic theory / distribution function

Cite this article

Download citation ▾
Raúl Machado. On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models. Front. Phys., 2014, 9(4): 490-510 DOI:10.1007/s11467-014-0417-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice gas automata, Phys. Rev. Lett., 1988, 61(20): 2332

[2]

F. J. Higuera and J. Jiménez, Boltzmann approach to lattice gas simulations, Europhys. Lett., 1989, 9(7): 663

[3]

F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett., 1989, 9(4): 345

[4]

J. M. V. A. Koelman, A simple lattice Boltzmann scheme for Navier–Stokes fluid flow, Europhys. Lett., 1991, 15(6): 603

[5]

H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 1992, 45(8): R5339

[6]

Y. H. Qian, D. d’Humiéres, and P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 1992, 17(6): 479

[7]

S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001

[8]

D. Hänel, Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase und Lattice–Boltzmann– Methoden, Berlin: Springer, 2004

[9]

Z. Guo and C. Shu, Lattice Boltzmann Method and its Applications in Engineering, Singapore: World Scientific, 2013

[10]

X. He and L.-S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 1997, 55(6): R6333

[11]

P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 1954, 94(3): 511

[12]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 1954, 7: 507

[13]

X. Shan, Lattice Boltzmann in micro-and nano-flow simulations, IMA J. Appl. Math., 2011, 76(5): 650

[14]

H. Chen and X. Shan, Fundamental conditions for N-thorder accurate lattice Boltzmann models, Physica D, 2008, 237(14−17): 2003

[15]

R. Machado, Numerical simulations of surface reaction in porous media with lattice Boltzmann, Chem. Eng. Sci., 2012, 69(1): 628

[16]

R. Machado, On pressure and corner boundary conditions with two lattice Boltzmann construction approaches, Math. Comput. Simul., 2012, 84: 26

[17]

S. Succi, Lattice Boltzmann at all-scales: From turbulence to DNA translocation, distinguished lecture, University of Leicester, Leicester, UK, 2006-November-15

[18]

R. Brownlee, A. Gorban, and J. Levesley, Nonequilibrium entropy limiters in lattice Boltzmann methods, Physica A, 2008, 387(2−3): 385

[19]

X. He and L. S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 1997, 56(6): 6811

[20]

X. Shan and X. He, Discretization of the velocity space in the solution of the Boltzmann equation, Phys. Rev. Lett., 1998, 80(1): 65

[21]

P. C. Philippi, L. A. Jr Hegele, L. O. E. Dos Santos, and R. Surmas, From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models, Phys. Rev. E, 2006, 73(5): 056702

[22]

X. Shan, X.-F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, J. Fluid Mech., 2006, 550: 413

[23]

X. Shan and H. Chen, A general multiple-relaxation-time Boltzmann collision model, Int. J. Mod. Phys. C, 2007, 18(4): 635

[24]

D. N. Siebert, L. A. Hegele, and P. C. Philippi, Thermal lattice Boltzmann in two dimensions, Int. J. Mod. Phys. C, 2007, 18(04): 546

[25]

X. Nie, X. Shan, and H. Chen, Thermal lattice Boltzmann model for gases with internal degrees of freedom, Phys. Rev. E, 2008, 77 (3): 035701(R)

[26]

S. H. Kim, H. Pitsch, and I. D. Boyd, Accuracy of higherorder lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. Comput. Phys., 2008, 227(19): 8655

[27]

G. -H.Tang, Y. -H.Zhang, and D. R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2008, 77(4): 046701

[28]

X. Shan, General solution of lattices for Cartesian lattice Bhatanagar–Gross–Krook models, Phys. Rev. E, 2010, 81(3): 036702

[29]

J. Meng and Y. Zhang, Gauss–Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2011, 83(3): 036704

[30]

S. S. Chikatamarla and I. V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett., 2006, 97(19): 190601

[31]

S. S. Chikatamarla and I. V. Karlin, Complete Galilean invariant lattice Boltzmann models, Comput. Phys. Commun., 2008, 179(1−3): 140

[32]

S. S. Chikatamarla and I. V. Karlin, Lattices for the lattice Boltzmann method, Phys. Rev. E, 2009, 79(4): 046701− Note: There is a typo in Eqs. (9) and (C3), where the last summand in W0 should be+1 and not+36.

[33]

G. R. McNamara, A. L. Garcia, and B. J. Alder, Stabilization of thermal lattice Boltzmann models, J. Stat. Phys., 1995, 81(1−2): 395

[34]

N. Cao, S. Chen, S. Jin, and D. Martínez, Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. Rev. E, 1997, 55(1): R21

[35]

M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E, 2003, 67(3): 036306

[36]

M. Watari and M. Tsutahara, Possibility of constructing a multispeed Bhatnagar–Gross–Krook thermal model of the lattice Boltzmann method, Phys. Rev. E, 2004, 70(1): 016703

[37]

T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 2004, 69(3): 035701

[38]

T. Kataoka and M. Tsutahara, Lattice Boltzmann method for the compressible Euler equations, Phys. Rev. E, 2004, 69(5): 056702

[39]

K. Qu, C. Shu, and Y. T. Chew, Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number, Phys. Rev. E, 2007, 75(3): 036706

[40]

A. Nejat and V. Abdollahi, A critical study of the compressible lattice Boltzmann methods for riemann problem, J. Sci. Comput., 2013, 54(1): 1

[41]

F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Multiplerelaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 2010, 90(5): 54003

[42]

Y. Gan, A. Xu, G. Zhang, and Y. Li, Lattice Boltzmann study on Kelvin–Helmholtz instability: Roles of velocity and density gradients, Phys. Rev. E, 2011, 83(5): 056704

[43]

Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E, 2011, 84(4): 046715

[44]

A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 2012, 7(5): 582

[45]

B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys., 2013, 8(1): 94

[46]

Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett., 2013, 103(2): 24003

[47]

P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 2003, 68(3): 036706

[48]

D. d’Humiéres, Generalized lattice Boltzmann equations, In: Rarefied gas dynamics: Theory and simulations (Eds. B. D. Shizgal and D. P. Weaver), Prog. Astronaut. Aeronaut., 1992, 159: 450

[49]

C.Z. Xu and F. C. Lau, Load Balancing in Parallel Computers: Theory and Practice, Berlin: Springer, 1996

[50]

H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, and R. Zhang, Grid refinement in lattice Boltzmann methods based on volumetric formulation, Physica A, 2006, 362(1): 158

[51]

G. Tang, Y. Zhang, and D. R. Emerson, Private communication, 2008

[52]

I. V. Karlin, A. Ferrante, and H. C. Öttinger, Perfect entropy functions of the Lattice Boltzmann method, Europhys. Lett., 1999, 47(2): 182

[53]

H. Chen, I. Goldhirsch, and S. A. Orszag, Discrete rotational symmetry, moment isotropy, and higher order lattice Boltzmann models, J. Sci. Comput., 2008, 34(1): 87

[54]

R. Rubinstein and L. S. Luo, Theory of the lattice Boltzmann equation: Symmetry properties of discrete velocity sets, Phys. Rev. E, 2008, 77(3): 036709

[55]

H. Bateman, Higher Transcendental Functions, Vols. I, II, III, New York: McGraw-Hill, 1953

[56]

G. Szeg, Orthogonal Polynomials, American Mathematics Society 23, 1939

[57]

T. S. Chihara, Generalized Hermite Polynomials, Ph.D. thesis, Purdue University, 1955

[58]

D. J. Dickinson and S. Warsi, On a generalized Hermite polynomial and a problem of Carlitz, Boll. Unione Mat. Ital., 1963, 18: 256

[59]

S. C. M. Dutta and K. L. More, On a class of generalized Hermite polynomials, Bull. Inst. Math. Acad. Sinica., 1975, 3: 377

[60]

M. Rosenblum, Generalized Hermite Polynomials and Boselike oscillator calculus, Oper. Theory Adv. Appl., 1994, 73: 369

[61]

J. Burkardt, Generalized Gauss-Hermite quadrature rules, 2010. See references therein.

[62]

J. Kautsky and S. Elhay, Calculation of the weights of interpolatory quadratures, Numer. Math., 1982, 40(3): 407

[63]

L. Pochhammer, Über hypergeometrische Funktionen n-ter Ordnung, J. Reine Angew. Math., 1870, 71: 316

[64]

C. A. Charalambides, Enumerative Combinatorics, Boca Raton: Chapman and Hall, 2002

[65]

N. Prasianakis, S. Chikatamarla, I. Karlin, S. Ansumali, and K. Boulouchos, Entropic lattice Boltzmann method for simulation of thermal flows, Math. Comput. Simul., 2006, 72(2−6): 179

[66]

L. Landau and E. Lifshitz, Course of Theoretical Physics: Physical Kinetics, Vol. 10, New York: Pergamon, 1981

[67]

J. Meng and Y. Zhang, Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows, J. Comput. Phys., 2011, 230(3): 835

[68]

P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Berlin: Springer, 1997

[69]

Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties, Oxford: Oxford University Press, 2002

[70]

Y.-H. Qian and Y. Zhou, Complete Galilean-invariant lattice BGK models for the Navier–Stokes equation, Europhys Lett., 1998, 42(4): 359

[71]

P. J. Dellar, Lattice and discrete Boltzmann equations for fully compressible flow, in: Computational Fluid and Solid Mechanics, edited by K. J. Bathe, Elsevier, 2005, pp. 632−635

[72]

G. R. McNamara, A. L. Garcia, and B. J. Alder, A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 1997, 87(5−6): 1111

[73]

D. N. Siebert, L. A. Jr Hegele, and P. C. Philippi, Lattice Boltzmann equation linear stability analysis: Thermal and athermal models, Phys. Rev. E, 2008, 77(2): 026707

[74]

R. A. Brownlee, A. N. Gorban, and J. Levesley, Stability and stabilization of the lattice Boltzmann method, Phys. Rev. E, 2007, 75(3): 036711

[75]

X. B. Nie, X. Shan, and H. Chen, Galilean invariance of lattice Boltzmann models, Europhys. Lett., 2008, 81(3): 34005

[76]

S. S. Chikatamarla, S. Ansumali, and I. V. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 2006, 97(1): 010201

[77]

I. V. Karlin, S. S. Chikatamarla, and S. Ansumali, Elements of the lattice Boltzmann method II: Kinetics and hydrodynamics in one dimension, Commun. Comput. Phys., 2007, 2(2): 196

[78]

X. He, S. Chen, and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 1998, 146(1): 282

[79]

P. C. Philippi, J. L. A. Jr Hegele, R. Surmas, D. N. Siebert, and L. O. E. dos Santos, From the Boltzmann to the lattice-Boltzmann equation: Beyond BGK collision models, Int. J. Mod. Phys. C, 2007, 18(04): 556

[80]

L. -S. Luo, Three myths in the lattice Boltzmann method, ICMMES, 2007-July-16

[81]

R. Machado, On the moment system and a flexible Prandtl number, Mod. Phys. Lett. B, 2014, 28(6): 1450048

[82]

S. Succi, Lattice Boltzmann across scales: From turbulence to DNA translocation, Eur. Phys. J. B, 2008, 64(3−4): 471

[83]

A. J. Wagner, An H-theorem for the lattice Boltzmann approach to hydrodynamics, Europhys. Lett., 1998, 44(2): 144

[84]

W. A. Yong and L. S. Luo, Nonexistence of H theorem for some lattice Boltzmann models, J. Stat. Phys., 2005, 121(1−2): 91

[85]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge: Cambridge University Press, 2009, seventh printing with corrections Ed.

[86]

H. C. Öttinger, Beyond Equilibrium Thermodynamics, New Jersey: John Wiley & Sons, 2005

[87]

P. Asinari and I. V. Karlin, Generalized Maxwell state and H theorem for computing fluid flows using the lattice Boltzmann method, Phys. Rev. E, 2009, 79(3): 036703

[88]

W. P. Yudistiawan, S. K. Kwak, D. V. Patil, and S. Ansumali, Higher-order Galilean-invariant lattice Boltzmann model for microflows: Single-component gas, Phys. Rev. E, 2010, 82(4): 046701

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (697KB)

1184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/