On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models
Raúl Machado
On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models
The influence of the use of the generalized Hermite polynomial on the Hermite-based lattice Boltzmann (LB) construction approach, lattice sets, the thermal weights, moments and the equilibrium distribution function (EDF) are addressed. A new moment system is proposed. The theoretical possibility to obtain a unique high-order Hermite-based singel relaxation time LB model capable to exactly match some first hydrodynamic moments thermally i) on-Cartesian lattice, ii) with thermal weights in the EDF, iii) whilst the highest possible hydrodynamic moments that are exactly matched are obtained with the shortest on-Cartesian lattice sets with some fixed real-valued temperatures, is also analyzed.
lattice Boltzmann / fluid dynamics / kinetic theory / distribution function
[1] |
G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice gas automata, Phys. Rev. Lett., 1988, 61(20): 2332
CrossRef
ADS
Google scholar
|
[2] |
F. J. Higuera and J. Jiménez, Boltzmann approach to lattice gas simulations, Europhys. Lett., 1989, 9(7): 663
CrossRef
ADS
Google scholar
|
[3] |
F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett., 1989, 9(4): 345
CrossRef
ADS
Google scholar
|
[4] |
J. M. V. A. Koelman, A simple lattice Boltzmann scheme for Navier–Stokes fluid flow, Europhys. Lett., 1991, 15(6): 603
CrossRef
ADS
Google scholar
|
[5] |
H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 1992, 45(8): R5339
CrossRef
ADS
Google scholar
|
[6] |
Y. H. Qian, D. d’Humiéres, and P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 1992, 17(6): 479
CrossRef
ADS
Google scholar
|
[7] |
S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
[8] |
D. Hänel, Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase und Lattice–Boltzmann– Methoden, Berlin: Springer, 2004
|
[9] |
Z. Guo and C. Shu, Lattice Boltzmann Method and its Applications in Engineering, Singapore: World Scientific, 2013
CrossRef
ADS
Google scholar
|
[10] |
X. He and L.-S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 1997, 55(6): R6333
CrossRef
ADS
Google scholar
|
[11] |
P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 1954, 94(3): 511
CrossRef
ADS
Google scholar
|
[12] |
P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 1954, 7: 507
|
[13] |
X. Shan, Lattice Boltzmann in micro-and nano-flow simulations, IMA J. Appl. Math., 2011, 76(5): 650
CrossRef
ADS
Google scholar
|
[14] |
H. Chen and X. Shan, Fundamental conditions for N-thorder accurate lattice Boltzmann models, Physica D, 2008, 237(14−17): 2003
CrossRef
ADS
Google scholar
|
[15] |
R. Machado, Numerical simulations of surface reaction in porous media with lattice Boltzmann, Chem. Eng. Sci., 2012, 69(1): 628
CrossRef
ADS
Google scholar
|
[16] |
R. Machado, On pressure and corner boundary conditions with two lattice Boltzmann construction approaches, Math. Comput. Simul., 2012, 84: 26
CrossRef
ADS
Google scholar
|
[17] |
S. Succi, Lattice Boltzmann at all-scales: From turbulence to DNA translocation, distinguished lecture, University of Leicester, Leicester, UK, 2006-November-15
|
[18] |
R. Brownlee, A. Gorban, and J. Levesley, Nonequilibrium entropy limiters in lattice Boltzmann methods, Physica A, 2008, 387(2−3): 385
CrossRef
ADS
Google scholar
|
[19] |
X. He and L. S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 1997, 56(6): 6811
CrossRef
ADS
Google scholar
|
[20] |
X. Shan and X. He, Discretization of the velocity space in the solution of the Boltzmann equation, Phys. Rev. Lett., 1998, 80(1): 65
CrossRef
ADS
Google scholar
|
[21] |
P. C. Philippi, L. A. Jr Hegele, L. O. E. Dos Santos, and R. Surmas, From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models, Phys. Rev. E, 2006, 73(5): 056702
CrossRef
ADS
Google scholar
|
[22] |
X. Shan, X.-F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, J. Fluid Mech., 2006, 550: 413
CrossRef
ADS
Google scholar
|
[23] |
X. Shan and H. Chen, A general multiple-relaxation-time Boltzmann collision model, Int. J. Mod. Phys. C, 2007, 18(4): 635
CrossRef
ADS
Google scholar
|
[24] |
D. N. Siebert, L. A. Hegele, and P. C. Philippi, Thermal lattice Boltzmann in two dimensions, Int. J. Mod. Phys. C, 2007, 18(04): 546
CrossRef
ADS
Google scholar
|
[25] |
X. Nie, X. Shan, and H. Chen, Thermal lattice Boltzmann model for gases with internal degrees of freedom, Phys. Rev. E, 2008, 77 (3): 035701(R)
CrossRef
ADS
Google scholar
|
[26] |
S. H. Kim, H. Pitsch, and I. D. Boyd, Accuracy of higherorder lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. Comput. Phys., 2008, 227(19): 8655
CrossRef
ADS
Google scholar
|
[27] |
G. -H.Tang, Y. -H.Zhang, and D. R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2008, 77(4): 046701
CrossRef
ADS
Google scholar
|
[28] |
X. Shan, General solution of lattices for Cartesian lattice Bhatanagar–Gross–Krook models, Phys. Rev. E, 2010, 81(3): 036702
CrossRef
ADS
Google scholar
|
[29] |
J. Meng and Y. Zhang, Gauss–Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2011, 83(3): 036704
CrossRef
ADS
Google scholar
|
[30] |
S. S. Chikatamarla and I. V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett., 2006, 97(19): 190601
CrossRef
ADS
Google scholar
|
[31] |
S. S. Chikatamarla and I. V. Karlin, Complete Galilean invariant lattice Boltzmann models, Comput. Phys. Commun., 2008, 179(1−3): 140
CrossRef
ADS
Google scholar
|
[32] |
S. S. Chikatamarla and I. V. Karlin, Lattices for the lattice Boltzmann method, Phys. Rev. E, 2009, 79(4): 046701− Note: There is a typo in Eqs. (9) and (C3), where the last summand in W0 should be+1 and not+36.
|
[33] |
G. R. McNamara, A. L. Garcia, and B. J. Alder, Stabilization of thermal lattice Boltzmann models, J. Stat. Phys., 1995, 81(1−2): 395
CrossRef
ADS
Google scholar
|
[34] |
N. Cao, S. Chen, S. Jin, and D. Martínez, Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. Rev. E, 1997, 55(1): R21
CrossRef
ADS
Google scholar
|
[35] |
M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E, 2003, 67(3): 036306
CrossRef
ADS
Google scholar
|
[36] |
M. Watari and M. Tsutahara, Possibility of constructing a multispeed Bhatnagar–Gross–Krook thermal model of the lattice Boltzmann method, Phys. Rev. E, 2004, 70(1): 016703
CrossRef
ADS
Google scholar
|
[37] |
T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 2004, 69(3): 035701
CrossRef
ADS
Google scholar
|
[38] |
T. Kataoka and M. Tsutahara, Lattice Boltzmann method for the compressible Euler equations, Phys. Rev. E, 2004, 69(5): 056702
CrossRef
ADS
Google scholar
|
[39] |
K. Qu, C. Shu, and Y. T. Chew, Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number, Phys. Rev. E, 2007, 75(3): 036706
CrossRef
ADS
Google scholar
|
[40] |
A. Nejat and V. Abdollahi, A critical study of the compressible lattice Boltzmann methods for riemann problem, J. Sci. Comput., 2013, 54(1): 1
CrossRef
ADS
Google scholar
|
[41] |
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Multiplerelaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 2010, 90(5): 54003
CrossRef
ADS
Google scholar
|
[42] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Lattice Boltzmann study on Kelvin–Helmholtz instability: Roles of velocity and density gradients, Phys. Rev. E, 2011, 83(5): 056704
CrossRef
ADS
Google scholar
|
[43] |
Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E, 2011, 84(4): 046715
CrossRef
ADS
Google scholar
|
[44] |
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 2012, 7(5): 582
CrossRef
ADS
Google scholar
|
[45] |
B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys., 2013, 8(1): 94
CrossRef
ADS
Google scholar
|
[46] |
Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett., 2013, 103(2): 24003
CrossRef
ADS
Google scholar
|
[47] |
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 2003, 68(3): 036706
CrossRef
ADS
Google scholar
|
[48] |
D. d’Humiéres, Generalized lattice Boltzmann equations, In: Rarefied gas dynamics: Theory and simulations (Eds. B. D. Shizgal and D. P. Weaver), Prog. Astronaut. Aeronaut., 1992, 159: 450
|
[49] |
C.Z. Xu and F. C. Lau, Load Balancing in Parallel Computers: Theory and Practice, Berlin: Springer, 1996
|
[50] |
H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, and R. Zhang, Grid refinement in lattice Boltzmann methods based on volumetric formulation, Physica A, 2006, 362(1): 158
CrossRef
ADS
Google scholar
|
[51] |
G. Tang, Y. Zhang, and D. R. Emerson, Private communication, 2008
|
[52] |
I. V. Karlin, A. Ferrante, and H. C. Öttinger, Perfect entropy functions of the Lattice Boltzmann method, Europhys. Lett., 1999, 47(2): 182
CrossRef
ADS
Google scholar
|
[53] |
H. Chen, I. Goldhirsch, and S. A. Orszag, Discrete rotational symmetry, moment isotropy, and higher order lattice Boltzmann models, J. Sci. Comput., 2008, 34(1): 87
CrossRef
ADS
Google scholar
|
[54] |
R. Rubinstein and L. S. Luo, Theory of the lattice Boltzmann equation: Symmetry properties of discrete velocity sets, Phys. Rev. E, 2008, 77(3): 036709
CrossRef
ADS
Google scholar
|
[55] |
H. Bateman, Higher Transcendental Functions, Vols. I, II, III, New York: McGraw-Hill, 1953
|
[56] |
G. Szeg, Orthogonal Polynomials, American Mathematics Society 23, 1939
|
[57] |
T. S. Chihara, Generalized Hermite Polynomials, Ph.D. thesis, Purdue University, 1955
|
[58] |
D. J. Dickinson and S. Warsi, On a generalized Hermite polynomial and a problem of Carlitz, Boll. Unione Mat. Ital., 1963, 18: 256
|
[59] |
S. C. M. Dutta and K. L. More, On a class of generalized Hermite polynomials, Bull. Inst. Math. Acad. Sinica., 1975, 3: 377
|
[60] |
M. Rosenblum, Generalized Hermite Polynomials and Boselike oscillator calculus, Oper. Theory Adv. Appl., 1994, 73: 369
|
[61] |
J. Burkardt, Generalized Gauss-Hermite quadrature rules, 2010. See references therein.
|
[62] |
J. Kautsky and S. Elhay, Calculation of the weights of interpolatory quadratures, Numer. Math., 1982, 40(3): 407
CrossRef
ADS
Google scholar
|
[63] |
L. Pochhammer, Über hypergeometrische Funktionen n-ter Ordnung, J. Reine Angew. Math., 1870, 71: 316
CrossRef
ADS
Google scholar
|
[64] |
C. A. Charalambides, Enumerative Combinatorics, Boca Raton: Chapman and Hall, 2002
|
[65] |
N. Prasianakis, S. Chikatamarla, I. Karlin, S. Ansumali, and K. Boulouchos, Entropic lattice Boltzmann method for simulation of thermal flows, Math. Comput. Simul., 2006, 72(2−6): 179
|
[66] |
L. Landau and E. Lifshitz, Course of Theoretical Physics: Physical Kinetics, Vol. 10, New York: Pergamon, 1981
|
[67] |
J. Meng and Y. Zhang, Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows, J. Comput. Phys., 2011, 230(3): 835
CrossRef
ADS
Google scholar
|
[68] |
P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Berlin: Springer, 1997
CrossRef
ADS
Google scholar
|
[69] |
Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties, Oxford: Oxford University Press, 2002
|
[70] |
Y.-H. Qian and Y. Zhou, Complete Galilean-invariant lattice BGK models for the Navier–Stokes equation, Europhys Lett., 1998, 42(4): 359
CrossRef
ADS
Google scholar
|
[71] |
P. J. Dellar, Lattice and discrete Boltzmann equations for fully compressible flow, in: Computational Fluid and Solid Mechanics, edited by K. J. Bathe, Elsevier, 2005, pp. 632−635
|
[72] |
G. R. McNamara, A. L. Garcia, and B. J. Alder, A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 1997, 87(5−6): 1111
CrossRef
ADS
Google scholar
|
[73] |
D. N. Siebert, L. A. Jr Hegele, and P. C. Philippi, Lattice Boltzmann equation linear stability analysis: Thermal and athermal models, Phys. Rev. E, 2008, 77(2): 026707
CrossRef
ADS
Google scholar
|
[74] |
R. A. Brownlee, A. N. Gorban, and J. Levesley, Stability and stabilization of the lattice Boltzmann method, Phys. Rev. E, 2007, 75(3): 036711
CrossRef
ADS
Google scholar
|
[75] |
X. B. Nie, X. Shan, and H. Chen, Galilean invariance of lattice Boltzmann models, Europhys. Lett., 2008, 81(3): 34005
CrossRef
ADS
Google scholar
|
[76] |
S. S. Chikatamarla, S. Ansumali, and I. V. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 2006, 97(1): 010201
CrossRef
ADS
Google scholar
|
[77] |
I. V. Karlin, S. S. Chikatamarla, and S. Ansumali, Elements of the lattice Boltzmann method II: Kinetics and hydrodynamics in one dimension, Commun. Comput. Phys., 2007, 2(2): 196
|
[78] |
X. He, S. Chen, and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 1998, 146(1): 282
CrossRef
ADS
Google scholar
|
[79] |
P. C. Philippi, J. L. A. Jr Hegele, R. Surmas, D. N. Siebert, and L. O. E. dos Santos, From the Boltzmann to the lattice-Boltzmann equation: Beyond BGK collision models, Int. J. Mod. Phys. C, 2007, 18(04): 556
CrossRef
ADS
Google scholar
|
[80] |
L. -S. Luo, Three myths in the lattice Boltzmann method, ICMMES, 2007-July-16
|
[81] |
R. Machado, On the moment system and a flexible Prandtl number, Mod. Phys. Lett. B, 2014, 28(6): 1450048
CrossRef
ADS
Google scholar
|
[82] |
S. Succi, Lattice Boltzmann across scales: From turbulence to DNA translocation, Eur. Phys. J. B, 2008, 64(3−4): 471
CrossRef
ADS
Google scholar
|
[83] |
A. J. Wagner, An H-theorem for the lattice Boltzmann approach to hydrodynamics, Europhys. Lett., 1998, 44(2): 144
CrossRef
ADS
Google scholar
|
[84] |
W. A. Yong and L. S. Luo, Nonexistence of H theorem for some lattice Boltzmann models, J. Stat. Phys., 2005, 121(1−2): 91
CrossRef
ADS
Google scholar
|
[85] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge: Cambridge University Press, 2009, seventh printing with corrections Ed.
|
[86] |
H. C. Öttinger, Beyond Equilibrium Thermodynamics, New Jersey: John Wiley & Sons, 2005
|
[87] |
P. Asinari and I. V. Karlin, Generalized Maxwell state and H theorem for computing fluid flows using the lattice Boltzmann method, Phys. Rev. E, 2009, 79(3): 036703
CrossRef
ADS
Google scholar
|
[88] |
W. P. Yudistiawan, S. K. Kwak, D. V. Patil, and S. Ansumali, Higher-order Galilean-invariant lattice Boltzmann model for microflows: Single-component gas, Phys. Rev. E, 2010, 82(4): 046701
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |