LDA+U calculation of structural and thermodynamic properties of Ce2O3

Bo Zhu, Yan Cheng, Zhen-Wei Niu, Meng Zhou, Min Gong

PDF(352 KB)
PDF(352 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 483-489. DOI: 10.1007/s11467-014-0414-4
RESEARCH ARTICLE
RESEARCH ARTICLE

LDA+U calculation of structural and thermodynamic properties of Ce2O3

Author information +
History +

Abstract

We investigated the structure and thermodynamic properties of the hexagonal Ce2O3 by using LDA+U scheme in the frame of density functional theory (DFT), together with the quasi-harmonic Debye model. The obtained lattice constants, bulk modulus, and the insulating gap agree well with the available experimental data. We successfully yielded the temperature dependence of bulk modulus, volume, thermal expansion coefficient, Debye temperature, specific heat as well as the entropy at different U values. It is found that the introduction of the U value cannot only correct the calculation of the structure but also improve the accurate description of the thermodynamic properties of Ce2O3. When U = 6 eV the calculated volume (538 Bohr3) at 300 K agrees well with the experimental value (536 Bohr3). The calculated entropy curve becomes more and more close to the experimental curve with the increasing U value.

Graphical abstract

Keywords

ensity functional theory / thermodynamic properties / quasi-harmonic Debye model / Ce2O3

Cite this article

Download citation ▾
Bo Zhu, Yan Cheng, Zhen-Wei Niu, Meng Zhou, Min Gong. LDA+U calculation of structural and thermodynamic properties of Ce2O3. Front. Phys., 2014, 9(4): 483‒489 https://doi.org/10.1007/s11467-014-0414-4

References

[1]
A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002
[2]
M. Kobayashi and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B, 1991, 61(4): 491
CrossRef ADS Google scholar
[3]
H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater., 1985, 131(2-3): 221
CrossRef ADS Google scholar
[4]
B. H. Justice and E. F. Westrum, Thermophysical properties of the lanthanide oxides. V. Heat capacity, thermodynamic properties, and energy levels of cerium(III) oxide, J. Phys. Chem., 1969, 73(6): 1959
CrossRef ADS Google scholar
[5]
M. E. Huntelaar, A. S. Booij, E. H. P. Cordfunke, R. R. van der Laan, A. C. G. van Genderen, and J. C. van Miltenburg, The thermodynamic properties of Ce2O3 (s) from T→ 0 K to 1500 K, J. Chem. Thermodyn., 2000, 32(4): 465
CrossRef ADS Google scholar
[6]
N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson, and B. I. Lundqvist, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Phys. Rev. B, 2001, 64(11): 115108
CrossRef ADS Google scholar
[7]
A. J. Cohen, P. Mori-sanchez, and W. T. Yang, Insights into current limitations of density functional theory, Science, 2008, 321(5890): 792
CrossRef ADS Google scholar
[8]
H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett., 2009, 102(12): 126403
CrossRef ADS Google scholar
[9]
N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, Quantum origin of the oxygen storage capability of ceria, Phys<?Pub Caret?>. Rev. Lett., 2002, 89(16): 166601
CrossRef ADS Google scholar
[10]
C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B, 2007, 75(3): 035115
CrossRef ADS Google scholar
[11]
D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2O3, and CeO2-x in the LDA+U formalism, Phys. Rev. B, 2007, 75(3): 035109
CrossRef ADS Google scholar
[12]
J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study of the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2O3, J. Chem. Theory Comput., 2011, 7(1): 56
CrossRef ADS Google scholar
[13]
Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys., 2013, 8(4): 405
CrossRef ADS Google scholar
[14]
M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys., 1992, 64(4): 1045
CrossRef ADS Google scholar
[15]
V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem., 2000, 77(5): 895
CrossRef ADS Google scholar
[16]
A. Otero-de-la-Roza and V. Luaña, Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data, Comput. Phys. Commun., 2011, 182(8): 1708
CrossRef ADS Google scholar
[17]
A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun., 2011, 182(10): 2232
CrossRef ADS Google scholar
[18]
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys., 1980, 58(8): 1200
CrossRef ADS Google scholar
[19]
V. I. Anisimov, I. V. Solovyev, and M. A. Korotin, Densityfunctional theory and NiO photoemission spectra, Phys. Rev. B, 1993, 48(23): 16929
CrossRef ADS Google scholar
[20]
M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B, 2005, 71(3): 035105
CrossRef ADS Google scholar
[21]
H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[22]
L. Y. Lu, X. R. Chen, B. R. Yu, and Q. Q. Gou, Firstprinciples calculations for transition phase and thermodynamic properties of GaAs, Chin. Phys., 2006, 15(4): 802
CrossRef ADS Google scholar
[23]
X. L. Zhou, K. Liu, X. R. Chen, and J. Zhu, Structural and thermodynamic properties of AlB2 compound, Chin. Phys., 2006, 15(12): 3014
CrossRef ADS Google scholar
[24]
Y. J. Hao, Y. Cheng, Y. J. Wang, and X. R. Chen, Elastic and thermodynamic properties of c-BN from first-principles calculations, Chin. Phys., 2007, 16(1): 217
CrossRef ADS Google scholar
[25]
J. Chang, X. R. Chen, W. Zhang, and J. Zhu, Firstprinciples investigations on elastic and thermodynamic properties of zinc-blende structure BeS, Chin. Phys. B, 2008, 17(4): 1377
CrossRef ADS Google scholar
[26]
X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfe, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter, 2009, 21(2): 025505
CrossRef ADS Google scholar
[27]
H. Z. Guo, X. R. Chen, L. C. Cai, and J. Gao, Structural and thermodynamic properties of MgB2 from first-principles calculations, Solid State Commun., 2005, 134(3): 787
CrossRef ADS Google scholar
[28]
X. L. Yuan, D. Q.Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comp. Mater. Sci., 2012, 58(2) : 125
CrossRef ADS Google scholar
[29]
H. Barnighausen and G. Schiller, The crystal structure of alfa-Ce2O3, J. Less-Common Met., 1985, 110(1-2): 385
CrossRef ADS Google scholar
[30]
P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys., 2006, 125(3): 034712
CrossRef ADS Google scholar
[31]
J. Heyd and G. E. Scuseria, Assessment and validation of a screened Coulomb hybrid density functional, J. Chem. Phys., 2004, 120(16): 7274
CrossRef ADS Google scholar
[32]
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 1947, 71(11): 809
CrossRef ADS Google scholar
[33]
A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X= O, S, Se) in the lanthanide series, J. Alloy. Comp., 1996, 242(1-2): 41
CrossRef ADS Google scholar
[34]
G. Y. Adachi and N. Imanaka, The binary rare earth oxides, Chem. Rev., 1998, 98: 1479
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(352 KB)

Accesses

Citations

Detail

Sections
Recommended

/