Global dynamical correlation energies in covariant density functional theory: Cranking approximation

Qian-Shun Zhang (张前顺), Zhong-Ming Niu (牛中明), Zhi-Pan Li (李志攀), Jiang-Ming Yao (尧江明), Jie Meng (孟杰)

PDF(354 KB)
PDF(354 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 529-536. DOI: 10.1007/s11467-014-0413-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Global dynamical correlation energies in covariant density functional theory: Cranking approximation

Author information +
History +

Abstract

The global dynamical correlation energies for 575 even–even nuclei with proton numbers ranging from Z= 8 to Z= 108 calculated with the covariant density functional theory using the PC-PK1 parametrization are presented. The dynamical correlation energies include the rotational correction energies obtained with the cranking approximation and the quadrupole vibrational correction energies. The systematic behavior of the present correlation energies is in good agreement with that obtained from the projected generator coordinate method using the SLy4 Skyrme force although our values are systematically smaller. After including the dynamical correlation energies, the rootmean- square deviation predicted by the PC-PK1 for the 575 even-even nuclei masses is reduced from 2.58 MeV to 1.24 MeV.

Graphical abstract

Keywords

binding energies and masses / nuclear density functional theory and extensions

Cite this article

Download citation ▾
Qian-Shun Zhang (张前顺), Zhong-Ming Niu (牛中明), Zhi-Pan Li (李志攀), Jiang-Ming Yao (尧江明), Jie Meng (孟杰). Global dynamical correlation energies in covariant density functional theory: Cranking approximation. Front. Phys., 2014, 9(4): 529‒536 https://doi.org/10.1007/s11467-014-0413-5

References

[1]
I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Measurements of interaction cross sections and nuclear radii in the light p-shell region, Phys. Rev. Lett., 1985, 55(24): 2676
CrossRef ADS Google scholar
[2]
A. C. Mueller and B. M. Sherrill, Nucli at the limits of particle stability, Annu. Rev. Nucl. Part. Sci., 1993, 43(1): 529
CrossRef ADS Google scholar
[3]
I. Tanihata, Nuclear structure studies from reaction induced by radioactive nuclear beams, Prog. Part. Nucl. Phys., 1995, 35: 505
CrossRef ADS Google scholar
[4]
J. Meng and P. Ring, Relativistic Hartree–Bogoliubov description of the neutron halo in 11Li, Phys. Rev. Lett., 1996, 77(19): 3963
CrossRef ADS Google scholar
[5]
J. Meng and P. Ring, Giant halo at the neutron drip line, Phys. Rev. Lett., 1998, 80(3): 460
CrossRef ADS Google scholar
[6]
O. Sorlin and M. G. Porquet, Nuclear magic numbers: New features far from stability, Prog. Part. Nucl. Phys., 2008, 61(2): 602
CrossRef ADS Google scholar
[7]
A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N = 16, near the neutron drip line, Phys. Rev. Lett., 2000, 84(24): 5493
CrossRef ADS Google scholar
[8]
S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Neutron halo in deformed nuclei, Phys. Rev. C, 2010, 82(1): 011301
CrossRef ADS Google scholar
[9]
E.M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys., 1957, 29(4): 547
CrossRef ADS Google scholar
[10]
B. Sun, F. Montes, L. S. Geng, H. Geissel, Y. A. Litvinov, and J. Meng, Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties, Phys. Rev. C, 2008, 78(2): 025806
CrossRef ADS Google scholar
[11]
Z. M. Niu, B. Sun, and J. Meng, Influence of nuclear physics inputs and astrophysical conditions on the Th/U chronometer, Phys. Rev. C, 2009, 80(6): 065806
CrossRef ADS Google scholar
[12]
Z. Li, Z. M. Niu, B. Sun, N. Wang, and J. Meng, WLW mass model in nuclear r-process calculations, Acta Phys. Sin., 2012, 61(7): 072601 (in Chinese)
[13]
W. H. Zhang, Z. M. Niu, F. Wang, X. B. Gong, and B. H. Sun, Uncertainties of nucleo-chronometers from nuclear physics inputs, Acta Phys. Sin., 2012, 61(11): 112601(in Chinese)
[14]
X. D. Xu, B. Sun, Z. M. Niu, Z. Li, Y. Z. Qian, and J. Meng, Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models, Phys. Rev. C, 2013, 87(1): 015805
CrossRef ADS Google scholar
[15]
Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, T. Nikšić, D. Vretenar, and J. Meng, b-decay half-lives of neutron-rich nuclei and matter flow in the r-process, Phys. Lett. B, 2013, 723(1-3): 172
CrossRef ADS Google scholar
[16]
P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, At. Data Nucl. Data Tables, 1995, 59(2): 185
CrossRef ADS Google scholar
[17]
H. A. Bethe and R. F. Bacher, Nuclear Physics A. Stationary states of nuclei, Rev. Mod. Phys., 1936, 8(2): 82
CrossRef ADS Google scholar
[18]
N. Wang, Z. Liang, M. Liu, and X. Wu, Mirror nuclei constraint in nuclear mass formula, Phys. Rev. C, 2010, 82(4): 044304
CrossRef ADS Google scholar
[19]
M. Liu, N. Wang, Y. Deng, and X. Wu, Further improvements on a global nuclear mass model, Phys. Rev. C, 2011, 84(1): 014333
CrossRef ADS Google scholar
[20]
J. Duflo and A. P. Zuker, Microscopic mass formulas, Phys. Rev. C, 1995, 52(1): R23
CrossRef ADS Google scholar
[21]
H. Koura, T. Tachibana, M. Uno, and M. Yamada, Nuclidic mass formula on a spherical basis with an improved even– odd term, Prog. Theor. Phys., 2005, 113(2): 305
CrossRef ADS Google scholar
[22]
M. Bender, G. F. Bertsch, and P. H. Heenen, Systematics of quadrupolar correlation energies, Phys. Rev. Lett., 2005, 94(10): 102503
CrossRef ADS Google scholar
[23]
M. Bender, G. F. Bertsch, and P. H. Heenen, Global study of quadrupole correlation effects, Phys. Rev. C, 2006, 73(3): 034322
CrossRef ADS Google scholar
[24]
S. Goriely, N. Chamel, and J. M. Pearson, Skyrme–Hartree– Fock–Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing, Phys. Rev. Lett., 2009, 102(15): 152503
CrossRef ADS Google scholar
[25]
S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter, Phys. Rev. C, 2010, 82(3): 035804
CrossRef ADS Google scholar
[26]
S. Goriely, S. Hilaire, M. Girod, and S. Péru, First Gogny– Hartree–Fock–Bogoliubov nuclear mass model, Phys. Rev. Lett., 2009, 102(24): 242501
CrossRef ADS Google scholar
[27]
P. G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics, Rep. Prog. Phys., 1989, 52(4): 439
CrossRef ADS Google scholar
[28]
P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys., 1996, 37: 193
CrossRef ADS Google scholar
[29]
D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Relativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep., 2005, 409(3-4): 101
CrossRef ADS Google scholar
[30]
J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys., 2006, 57(2): 470
CrossRef ADS Google scholar
[31]
D. Hirata, K. Sumiyoshi, I. Tanihata, Y. Sugahara, T. Tachibana, and H. Toki, A systematic study of even-even nuclei up to the drip lines within the relativistic mean field framework, Nucl. Phys. A, 1997, 616(1-2): 438
CrossRef ADS Google scholar
[32]
G. A. Lalazissis, S. Raman, and P. Ring, Ground-state properties of even–even nuclei in the relativistic mean-field theory, At. Data Nucl. Data Tables, 1999, 71(1): 1
CrossRef ADS Google scholar
[33]
L. S. Geng, H. Toki, and J. Meng, Masses, Deformations and charge radii – nuclear ground-state properties in the relativistic mean field model, Prog. Theor. Phys., 2005, 113(4): 785
CrossRef ADS Google scholar
[34]
T. Nikšić, D. Vretenar, and P. Ring, Beyond the relativistic mean-field approximation. II. Configuration mixing of meanfield wave functions projected on angular momentum and particle number, Phys. Rev. C, 2006, 74(6): 064309
CrossRef ADS Google scholar
[35]
J. M. Yao, J. Meng, P. Ring, and D. Pena Arteaga, Threedimensional angular momentum projected relativistic pointcoupling approach for low-lying excited states in 24 Mg, Chin. Phys. Lett., 2008, 25(10): 3609
CrossRef ADS Google scholar
[36]
J. M. Yao, J. Meng, P. Ring, and D. Pena Arteaga, Threedimensional angular momentum projection in relativistic mean-field theory, Phys. Rev. C, 2009, 79(4): 044312
CrossRef ADS Google scholar
[37]
J. M. Yao, J. Meng, P. Ring, and D. Vretenar, Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions, Phys. Rev. C, 2010, 81(4): 044311
CrossRef ADS Google scholar
[38]
T. Nikšić, Z. P. Li, D. Vretenar, L. Próchniak, J. Meng, and P. Ring, Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions, Phys. Rev. C, 2009, 79(3): 034303
CrossRef ADS Google scholar
[39]
Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and P. Ring, Microscopic analysis of nuclear quantum phase transitions in the N≈90 region, Phys. Rev. C, 2009, 79(5): 054301
CrossRef ADS Google scholar
[40]
Z. M. Niu, Y. F. Niu, Q. Liu, H. Z. Liang, and J. Y. Guo, Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton–neutron pairing, Phys. Rev. C, 2013, 87(5): 051303(R)
CrossRef ADS Google scholar
[41]
J. M. Yao, H. Mei, H. Chen, J. Meng, P. Ring, and D. Vretenar, Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes, Phys. Rev. C, 2011, 83(1): 014308
CrossRef ADS Google scholar
[42]
P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C, 2010, 82(5): 054319
CrossRef ADS Google scholar
[43]
P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B, 2011, 699(3): 181
CrossRef ADS Google scholar
[44]
P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett., 2011, 107(12): 122501
CrossRef ADS Google scholar
[45]
J. Xiang, Z. P. Li, Z. X. Li, J. M. Yao, and J. Meng, Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N≈ 60, Nucl. Phys. A, 2012, 873: 1
CrossRef ADS Google scholar
[46]
Z. P. Li, C. Y. Li, J. Xiang, J. M. Yao, and J. Meng, Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian, Phys. Lett. B, 2012, 717(4-5): 470
CrossRef ADS Google scholar
[47]
X. M. Hua, T. H. Heng, Z. M. Niu, B. Sun, and J. Y. Guo, Comparative study of nuclear masses in the relativistic mean-field model, Sci. China Phys. Mech. Astron., 2012, 55(12): 2414
CrossRef ADS Google scholar
[48]
P. W. Zhao, L. S. Song, B. Sun, H. Geissel, and J. Meng, Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa, Phys. Rev. C, 2012, 86(6): 064324
CrossRef ADS Google scholar
[49]
J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys., 2013, 8(1): 55
CrossRef ADS Google scholar
[50]
X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Extending the nuclear chart by continuum: From oxygen to titanium, Sci. China Phys. Mech. Astron., 2013, 56(11): 2031
CrossRef ADS Google scholar
[51]
T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model, Phys. Rev. C, 2002, 65(4): 044308
CrossRef ADS Google scholar
[52]
S. Goriely, M. Samyn, J. M. Pearson, and M. Onsi, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IV: Neutron-matter constraint, Nucl. Phys. A, 2005, 750(2-4): 425
CrossRef ADS Google scholar
[53]
N. Chamel, S. Goriely, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to S01 neutron-matter gap, Nucl. Phys. A, 2008, 812(1-4): 72
CrossRef ADS Google scholar
[54]
D. Inglis, Nuclear moments of inertia due to nucleon motion in a rotating well, Phys. Rev., 1956, 103(6): 1786
CrossRef ADS Google scholar
[55]
S. Belyaev, Concerning the calculation of the nuclear moment of inertia, Nucl. Phys. A, 1961, 24: 322
[56]
See Supplemental files for the detailed results.
[57]
R. R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo, Angular momentum projected analysis of quadrupole collectivity in Mg30,32,34 and Si32,34,36,38 with the Gogny interaction, Phys. Lett. B2000, 474(1-2): 15
CrossRef ADS Google scholar
[58]
Z. P. Li, J. M. Yao, D. Vretenar, T. Nikšić, H. Chen, and J. Meng, Energy density functional analysis of shape evolution in N=28 isotones, Phys. Rev. C, 2011, 84(5): 054304
CrossRef ADS Google scholar
[59]
K. Heyde and J. L. Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys., 2011, 83(4): 1467
CrossRef ADS Google scholar
[60]
G. Audi, A. H. Wapstra, and C. Thibault, The Ame2003 atomic mass evaluation, Nucl. Phys. A, 2003, 729(1): 337
CrossRef ADS Google scholar
[61]
T. R. Rodríguez and J. L. Egido, Multiple shape coexistence in the nucleus, Phys. Lett. B, 2011, 705(3): 255
CrossRef ADS Google scholar
[62]
Y. Fu, H. Mei, J. Xiang, Z. P. Li, J. M. Yao, and J. Meng, Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes, Phys. Rev. C, 2013, 87(5): 054305
CrossRef ADS Google scholar
[63]
E. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev., 1937, 51(2): 106
CrossRef ADS Google scholar
[64]
S. Goriely, M. Samyn, P. H. Heenen, J. M. Pearson, and F. Tondeur, Hartree–Fock mass formulas and extrapolation to new mass data, Phys. Rev. C, 2002, 66(2): 024326
CrossRef ADS Google scholar
[65]
P. Möller, R. Bengtsson, B. G. Carlsson, P. Olivius, and T. Ichikawa, Global calculations of ground-state axial shape asymmetry of nuclei, Phys. Rev. Lett., 2006, 97(16): 162502
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(354 KB)

Accesses

Citations

Detail

Sections
Recommended

/