Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study

Qing-Xiao Zhou , Chao-Yang Wang , Zhi-Bing Fu , Yong-Jian Tang , Hong Zhang

Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 200 -209.

PDF (1165KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 200 -209. DOI: 10.1007/s11467-013-0409-6

Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study

Author information +
History +
PDF (1165KB)

Abstract

The geometries, formation energies and electronic band structures of (8, 0) and (14, 0) single-walled carbon nanotubes (SWCNTs) with various defects, including vacancy, Stone–Wales defect, and octagon–pentagon pair defect, have been investigated within the framework of the density-functional theory (DFT), and the influence of the concentration within the same style of defect on the physical and chemical properties of SWCNTs is also studied. The results suggest that the existence of vacancy and octagon–pentagon pair defect both reduce the band gap, whereas the SW-defect induces a band gap opening in CNTs. More interestingly, the band gaps of (8, 0) and (14, 0) SWCNTs configurations with two octagon–pentagon pair defect presents 0.517 eV and 0.163 eV, which are a little smaller than the perfect CNTs. Furthermore, with the concentration of defects increasing, there is a decreasing of band gap making the two types of SWCNTs change from a semiconductor to a metallic conductor.

Graphical abstract

Keywords

carbon nanotube / density functional theory / defect / electronic structure

Cite this article

Download citation ▾
Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study. Front. Phys., 2014, 9(2): 200-209 DOI:10.1007/s11467-013-0409-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett., 1998, 73(17): 2447

[2]

Y. W. Son, M. L. Cohen, and S. G. Louie, Electric field effects on spin transport in defective metallic carbon nanotubes, Nano Lett., 2007, 7(11): 3518

[3]

Z. W. Zhang, J. C. Li, and Q. Jiang, Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review, Front. Phys., 2011, 6(2): 162

[4]

L. F. Huang and Z. Zheng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys., 2012, 7(3): 324

[5]

H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, and S. Iijima, Structural identification of single and double-walled carbon nanotubes by high-resolution transmission electron microscopy, Chem. Phys. Lett., 2005, 412(1-3): 116

[6]

M. Ouyang, Energy gaps in “metallic” single-walled carbon nanotubes, Science, 2001, 292(5517): 702

[7]

J. Huang, S. Chen, Z. Ren, Z. Wang, K. Kempa, M. Naughton, G. Chen, and M. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high emperatures, Phys. Rev. Lett., 2007, 98(18): 185501

[8]

A. J. Stone and D. J. Wales, Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett., 1986, 128(5-6): 501

[9]

J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, An extended defect in graphene as a metallic wire, Nat. Nanotechnol., 2010, 53:1

[10]

M. T. Lusk, D. T. Wu, and L. D. Carr, Graphene nanoengineering and the inverse-Stone–Thrower–Wales defect, Phys. Rev. B, 2010, 81(15): 155444

[11]

G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The role of pentagon–heptagon pair defect in carbon nanotube: The center of vacancy reconstruction, Appl. Phys. Lett., 2010, 97(9): 093106

[12]

A. V. Krasheninnikov and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys., 2010, 107(7): 071301

[13]

A. Tolvanen, G. Buchs, P. Ruffieux, P. Gröning, O. Gröning, and A. Krasheninnikov, Modifying the electronic structure of semiconducting single-walled carbon nanotubes by Ar+ ion irradiation, Phys. Rev. B, 2009, 79(12): 125430

[14]

C. X. Zhang, C. He, Z. Yu, L. Xue, K. W. Zhang, L. Z. Sun, and J. Zhong, Effects of oxygen-containing defect complex on the electronic structures and transport properties of single-walled carbon nanotubes, Phys. Lett. A, 2012, 376(20): 1686

[15]

M. Bockrath, Resonant electron scattering by defects in single-walled carbon nanotubes, Science, 2001, 291(5502): 283

[16]

S. Okada, K. Nakada, K. Kuwabara, K. Daigoku, and T. Kawai, Ferromagnetic spin ordering on carbon nanotubes with topological line defects, Phys. Rev. B, 2006, 74(12): 121412

[17]

Y. Yang, Y. Xiao, W. Ren, X. Yan, and F. Pan, Halfmetallic chromium-chain-embedded wire in graphene and carbon nanotubes, Phys. Rev. B, 2011, 84(19): 195447

[18]

W. Orellana, Reaction and incorporation of H2 molecules inside single-wall carbon nanotubes through multivacancy defects, Phys. Rev. B, 2009, 80(7): 075421

[19]

K. Nishidate and M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, Phys. Rev. B, 2005, 71(24): 245418

[20]

H. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett., 2000, 84(13): 2917

[21]

G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube, Appl. Phys. Lett., 2008, 92(4): 043104

[22]

X. Qin, Q. Y. Meng, and W. Zhao, Effects of Stone–Wales defect upon adsorption of formaldehyde on graphene sheet with or without Al dopant: A first principle study, Surf. Sci., 2011, 605(9-10): 930

[23]

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865

[24]

B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys., 2000, 113(18): 7756

[25]

P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: University of Ontario Press, 1999

[26]

E. Durgun, S. Dag, V. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B, 2003, 67(20): 201401

[27]

X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett., 1994, 72(12): 1878

[28]

B. I. Yakobson, G. Samsonidze, and G. G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes, Carbon, 2000, 38(11-12): 1675

[29]

G. G. Samsonidze, G. G. Samsonidze, and B. I. Yakobson, Energetics of Stone–Wales defects in deformations of monoatomic hexagonal layers, Comput. Mater. Sci., 2002, 23(1-4): 62

[30]

D. Tekleab, D. Carroll, G. Samsonidze, and B. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube, Phys. Rev. B, 2001, 64(3): 035419

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1165KB)

1251

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/