Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation

Zhang-Hu Hu, Mao-Du Chen, You-Nian Wang

PDF(1531 KB)
PDF(1531 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 226-233. DOI: 10.1007/s11467-013-0406-9

Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation

Author information +
History +

Abstract

A two-dimensional electromagnetic Particle-in-Cell (PIC) simulation model is proposed to study the propagation of intense ion beams with beam width wb small compared to the electron skin depth c/ωpe through background plasmas in the presence of external applied magnetic fields. The effective electron gyroradius wge is found to be an important parameter for ion beam transport in the presence of magnetic fields. In the beam regions, the background plasmas respond differently to the ion beam of width wb<wge and wb>wge for the given magnetic field and beam energy. For the case of beam width wb<wgewith relative weak external magnetic fields, the rotation effects of plasma electrons are found to be significant and contributes to the significant enhancement of the self-electric and self-magnetic fields. While for the case of beam width wb>wge with relative strong external magnetic fields, the rotation effects of plasma electrons are strongly inhibited and a well neutralization of ion beam current can be found. Finally, the influences of different beam widths, beam energies and magnetic fields on the neutralization of ion beam current are summarized for the cases of wb<wge<c/ωge, wge<wb<c/ωpe and wb<c/ωpe<wge.

Graphical abstract

Keywords

current neutralization / ion beams / magnetized plasmas / Particle-in-Cell simulations

Cite this article

Download citation ▾
Zhang-Hu Hu, Mao-Du Chen, You-Nian Wang. Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation. Front. Phys., 2014, 9(2): 226‒233 https://doi.org/10.1007/s11467-013-0406-9

References

[1]
A. Ng, T. Ao, F. Perror, M. W. C. Dharma-Wardana, and M. E. Foord, Idealized slab plasma approach for the study of warm dense matter, Laser Part. Beams, 2005, 23(04): 527
CrossRef ADS Google scholar
[2]
R. P. Drake, High-Energy-Density Physics, Berlin: Springer-Verlag, 2006
[3]
N. A. Tahir, D. H. H. Hoffmann, A. Kozyreva, A. Shutov, J. A. Maruhn, U. Neuner, A. Tauschwitz, P. Spiller, and R. Bock, Shock compression of condensed matter using intense beams of energetic heavy ions, Phys. Rev. E, 2000, 61(2): 1975
CrossRef ADS Google scholar
[4]
N. A. Tahir, D. H. H. Hoffmann, A. Kozyreva, A. Shutov, J. A. Maruhn, U. Neuner, A. Tauschwitz, P. Spiller, and R. Bock, Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot, Phys. Rev. E, 2000, 62(1): 1224
CrossRef ADS Google scholar
[5]
P. K. Roy, S. S. Yu, E. Henestroza, A. Anders, F. M. Bieniosek, J. Coleman, S. Eylon, W. G. Greenway, M. Leitner, B. G. Logan, W. L. Waldron, D. R. Welch, C. Thoma, A. B. Sefkow, E. P. Gilson, P. C. Efthimion, and R. C. Davidson, Drift compression of an intense neutralized ion beam, Phys. Rev. Lett., 2005, 95(23): 234801
CrossRef ADS Google scholar
[6]
S. S. Yu, R. P. Abbott, R. O. Bangerter, J. J. Barnard, R. J. Briggs, D. Callahan, C. M. Celata, R. Davidson, C. S. Debonnel, S. Eylon, A. Faltens, A. Friedman, D. P. Grote, P. Heitzenroeder, E. Henestroza, I. Kaganovich, J. W. Kwan, J. F. Latkowski, E. P. Lee, B. G. Logan, P. F. Peterson, D. Rose, P. K. Roy, G. L. Sabbi, P. A. Seidl, W. M. Sharp, and D. R. Welch, Heavy ion fusion (HIF) driver point designs, Nucl. Instrum. Methods Phys. Res. A, 2005, 544(1-2): 294
CrossRef ADS Google scholar
[7]
I. D. Kaganovich, G. Shvets, E. Startsev, and R. C. Davidson, Nonlinear charge and current neutralization of an ion beam pulse in a pre-formed plasma, Phys. Plasmas, 2001, 8(9): 4180
CrossRef ADS Google scholar
[8]
D. R. Welch, D. V. Rose, B. V. Oliver, and R. E. Clark, Simulation techniques for heavy ion fusion chamber transport, Nucl. Instrum. Methods Phys. Res. A, 2001, 464(1-3): 134
CrossRef ADS Google scholar
[9]
I. D. Kaganovich, E. Startsev, and R. C. Davidson, Nonlinear plasma waves excitation by intense ion beams in background plasma, Phys. Plasmas, 2004, 11(7): 3546
CrossRef ADS Google scholar
[10]
E. Henestroza, S. Eylon, P. Roy, S. Yu, A. Anders, F. Bieniosek, W. Greenway, B. Logan, R. MacGill, D. Shuman, D. Vanecek, W. Waldron, W. Sharp, T. Houck, R. Davidson, P. Efthimion, E. Gilson, A. B. Sefkow, D. R. Welch, D. Rose, and C. Olson, Design and characterization of a neutralizedtransport experiment for heavy-ion fusion, Phys. Rev. ST Accel. Beams, 2004, 7(8): 083501
CrossRef ADS Google scholar
[11]
P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M. Bieniosek, W. G. Greenway, B. G. Logan, W. L. Waldron, D. L. Vanecek, D. R. Welch, D. V. Rose, R. C. Davidson, P. C. Efthimion, E. P. Gilson, A. B. Sefkow, and W. M. Sharp, Results on intense beam focusing and neutralization from the neutralized beam experiment, Phys. Plasmas, 2004, 11(5): 2890
CrossRef ADS Google scholar
[12]
P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, E. P. Gilson, F. M. Bieniosek, W. G. Greenway, B. G. Logan, W. L. Waldron, D. B. Shuman, D. L. Vanecek, D. R. Welch, D. V. Rose, R. C. Davidson, P. C. Efthimion, I. D. Kaganovich, A. B. Sefkow, and W. M. Sharp, Drift compression and final focus options for heavy ion fusion, Nucl. Instrum. Methods Phys. Res. A, 2005, 544(1-2): 255
[13]
J. S. T. Ng, P. Chen, H. Baldis, P. Bolton, D. Cline, W. Craddock, C. Crawford, F. J. Decker, C. Field, Y. Fukui, V. Kumar, R. Iverson, F. King, R. E. Kirby, K. Nakajima, R. Noble, A. Ogata, P. Raimondi, D. Walz, and A. W. Weidemann, Observation of plasma focusing of a 28.5 GeV positron beam, Phys. Rev. Lett., 2001, 87(24): 244801
CrossRef ADS Google scholar
[14]
H. Qin, R. C. Davidson, J. J. Barnard, and E. P. Lee, Drift compression and final focus options for heavy ion fusion, Nucl. Instrum. Methods Phys. Res. A, 2005, 544(1-2): 255
CrossRef ADS Google scholar
[15]
R. C. Davidson and H. Qin, Kinetic description of neutralized drift compression and transverse focusing of intense ion charge bunches, Phys. Rev. ST Accel. Beams, 2005, 8(6): 064201
CrossRef ADS Google scholar
[16]
A. B. Sefkow and R. C. Davidson, Theoretical models for describing longitudinal bunch compression in the neutralized drift compression experiment, Phys. Rev. ST Accel. Beams, 2006, 9(9): 090101
CrossRef ADS Google scholar
[17]
I. D. Kaganovich, E. A. Startsev, A. B. Sefkow, and R. C. Davidson, Charge and current neutralization of an ion-beam pulse propagating in a background plasma along a Solenoidal magnetic field, Phys. Rev. Lett., 2007, 99(23): 235002
CrossRef ADS Google scholar
[18]
M. A. Dorf, I. D. Kaganovich, E. A. Startsev, and R. C. Davidson, Enhanced self-focusing of an ion beam pulse propagating through a background plasma along a Solenoidal magnetic field, Phys. Rev. Lett., 2009, 103(7): 075003
CrossRef ADS Google scholar
[19]
T. Namiki, A new FDTD algorithm based on alternatingdirection implicit method, IEEE Trans. Microw. Theory Tech., 1999, 47(10): 2003
CrossRef ADS Google scholar
[20]
R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, New York: McGraw-Hill, 1981
[21]
J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 1994, 114(2): 185
CrossRef ADS Google scholar
[22]
J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., 1992, 69(2-3): 306
CrossRef ADS Google scholar
[23]
M. A. Dorf, I. D. Kaganovich, E. A. Startsev, and R. C. Davidson, Whistler wave excitation and effects of selffocusing on ion beam propagation through a background plasma along a solenoidal magnetic field, Phys. Plasmas, 2010, 17(2): 023103
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1531 KB)

Accesses

Citations

Detail

Sections
Recommended

/